
Software Is Never Done:
Refactoring the Acquisition Code for Competitive Advantage

Defense Innovation Board, 21 March 2019

J. Michael McQuade and Richard M. Murray (co-chairs)
Gilman Louie, Milo Medin, Jennifer Pahlka, Trae Stephens

Main Report

This report summarizes the findings, recommendations, analysis, and insights of the Defense
Innovation Board (DIB) study on Software Acquisition and Practices (SWAP), pursuant to
Section 872 of the 2018 National Defense Authorization Act.1 The ability to develop, procure,
assure, deploy, and maintain software is central to national defense. The threats that the United
States faces are changing at an ever- increasing pace, and the Department of Defense’s
(DoD’s) ability to adapt and respond to these threats is now determined by its ability to develop
and deploy software to the field rapidly. The current approach to software development is a
leading source of risk to DoD; it takes too long, is too expensive, and exposes warfighters to
unacceptable risk by delaying their access to the tools they need to ensure mission success. In
this report, we focus on three fundamental themes: (1) speed and cycle time are the most
important metrics for managing software; (2) software is made by people, and for people, so
digital talent matters; and (3) software is different than hardware (and not all software is the
same). We provide a set of major recommendations that focus on four primary lines of effort:
(A) refactoring statutes, regulations, and processes specifically for software—including
acquisition, development, assurance, deployment, and maintenance—to remove hardware-
centric bottlenecks while providing more insight and better oversight; (B) creating and
maintaining interoperable (cross-program/cross-service) digital infrastructure to enable
continuous and rapid deployment, scaling, testing, and optimization of software as an enduring
capability; (C) creating new paths for digital talent and increasing the level of understanding of
modern software within the acquisition workforce; and (D) changing the practice of how software
is procured and developed by adopting modern software development approaches.

Contents:
Chapter 1. Who Cares: Why Does Software Matter for the DoD? 1

Chapter 2. What Does It Look Like to Do Software Right? 7

Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened? 15

Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward 26

Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD 31

Acknowledgements 43

Vignettes 45

1 2018 NDAA, Sec. 872. Defense Innovation Board analysis of software acquisition regulations.

https://www.congress.gov/115/plaws/publ91/PLAW-115publ91.pdf
HanesK
Cleared

DIB SWAP Study Preliminary Release, 21 Mar 2019 1

Chapter 1. Who Cares: Why Does Software Matter for the DoD?

This chapter provides a high-level vision of why software is critical for national security and the
types of software we are going to have to build in the future. We also provide a description of
different types of software, where they are used, and why a one-size-fits-all approach will not
work.

1.1 Where Are We Coming from, Where Are We Going?

While software development has always been a challenge for the Department, today these
challenges greatly affect our ability to deploy and maintain mission critical systems to meet
current and future threats. In the past, software simply served as an enabler of hardware
systems and weapons platforms.

Software now defines our mission critical capabilities and our ability to sense, share, integrate,
coordinate, and act. Software is everywhere and is in almost everything that the Department
operates and uses. Software drives our weapons systems; command, control, and
communications systems; intelligence systems; logistics; and infrastructure and it drives much
of the backroom, enterprise process that make the Department function. If cyber is the new
domain in which we are fighting, then our ability to maintain situational awareness and our
ability to fight, defend, and counter threats will be based on the capabilities of our software. In
this new domain software is both the enabler as well as the target of the fight.

As our military systems become increasingly networked and automated, as autonomy becomes
more prevalent, as we become more dependent on machine learning and artificial intelligence,
then our ability to maintain superiority will be directly linked to our ability to field and maintain
software that is better, smarter, and more capable than our adversaries software. Even our
ability to defend against new physical and kinetic threats like hypersonics, energetics, and
biological weapons will be based on software capabilities. We need to identify and respond to
these new threats as they happen in near real time. Our ability to identify and respond to these
new threats in near real time will be based on our ability to develop and push new software
defined capabilities to meet those threats on time scales that greatly outpace our adversaries’
ability to do so.

The ability to meet future threats requires us to rethink how we develop, procure, assure,
deploy, and maintain software. DoD’s current procurement processes treat software programs
like hardware programs but can no longer take years to develop software for our major systems.
Software cannot be an afterthought to hardware and it cannot be acquired, developed, and
managed like hardware. Its acquisition and development approaches are also antiquated and
do not meet the timely demands of its missions. Fixing the Department’s software approach is
more than just making sure that we get control over cost and budget, it is about our ability to
maintain our fighting readiness and our ability to win the fight and counter any threat regardless
of domain and regardless of adversary.

DIB SWAP Study Preliminary Release, 21 Mar 2019 2

1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD

Not all software systems are the same and therefore it is important to optimize development
processes and oversight mechanisms to the different types of software that are used by DoD.
We distinguish here between two different aspects of software: operational function (use) and
implementation platform. To a large extent, a given operational function can be implemented on
many different computational platforms depending on whether it is a mission support function
(where high bandwidth connectivity to the cloud is highly likely) or a field-forward software
application (where connectivity many be compromised and/or undesirable).

● Enterprise systems: very large-scale software systems intended to manage a large
collection of users, interface with many other systems, and generally used at the DoD level
or equivalent. These systems should always run in the cloud and should use architectures
that allow interoperability, expandability, and reliability. In most cases the software should
be commercial software purchased without modification to the underlying code, but with
DoD-specific configuration. Examples include: e-mail systems, accounting systems, travel
systems, and HR databases.

● Business systems: essentially the same as enterprise systems, but operating at a slightly
smaller scale (e.g., for one of the Services). Like enterprise systems, they are interoperable,
expandable, reliable, and probably based on commercial offerings. Similar functions may
be customized differently by individual Services, though they should all interoperate with
DoD-wide enterprise systems. Examples include: software development environments,
Service-specific HR, financial, and logistics systems.

● Combat systems: software applications that are unique to the national security space and
used as part of combat operations. Combat systems may require some level of
customization that may be unique to DoD, not the least of which will be specialized
cybersecurity considerations to enable them to continue to function during an adversarial
attack. (Note that since modern DoD enterprise and business systems depend on software,
cyber attacks to disrupt operations have the potential be just as crippling as those aimed at
combat systems.)

We further break down combat systems into subcategories:

○ Logistics systems: any system that is used to keep track of materials, supplies, and
transport as part of operational use (versus Service-scale logistics systems, with which
they should interoperate). While used actively during operations, logistics systems are
likely to run on commercial hardware and operating systems, allowing them to build on
commercial-off-the-shelf (COTS) technologies. Platform-based architectures enable
integration of new capabilities functions over time (probably on a months-long or annual
time scale). Operation in the cloud or based on servers is likely.

○ Mission systems: any system used to plan and monitor ongoing operations. Similar to
logistics systems, this software will typically use commercial hardware and operating
systems and may be run in the cloud, on local services, or a combination of the two

DIB SWAP Study Preliminary Release, 21 Mar 2019 3

(including fallback modes). Even if run locally (such as in an air operations center), they
will heavily leverage cloud technologies, at least in terms of critical functions. These
systems should be able to incorporate new functionality at a rate that is set by the speed
at which the operational environment changes (days to months).

○ Weapons system: any system that is capable of the delivery of lethal force, as well as
any direct support systems used as part of the operation of the weapon. Note that our
definition differs from the standard DoD definition2 of a weapons system, which also
includes any related equipment, materials, services, personnel, and means of delivery
and deployment (if applicable) required for self-sufficiency. The DoD definition would
most likely include the mission and logistics functions, which we find useful to break out
separately. Software on weapons systems is traditionally closely tied to hardware, but
as we move to greater reliability of software-defined systems and distributed intelligence,
weapons systems software is becoming increasingly hardware independent (similar to
operating systems for mobile devices, which run across many different hardware
platforms).

We also define several different types of computing platforms on which the operational functions
above might be implemented:

● Cloud computing: computing that is typically provided in a manner such that the specific
location of the compute hardware is not relevant (and may change over time). These
systems will typically be running on commercial hardware and using commercial operating
systems, and the applications running on them will run even as the underlying hardware
changes. The important point here is that the hardware and operating systems are
generally transparent to the application and its user.

● Client/server computing: computing provided by a combination of hardware resources
available in a computing center (servers) as well as local computing (client). These systems
will usually be running on commercial hardware and using commercial operating systems.

● Desktop/laptop/tablet computing: computing that is carried out on a single system, often by
interacting with data sources across a network. These systems will usually be running on
commercial hardware and using commercial operating systems.

● Embedded computing: computing that is tied to a physical, often-customized hardware
platform and that has special features that requires careful integration between software and
hardware.

A single software system may have multiple components or functions that cross these
definitions, and components of an integrated system will likely have elements that do the same.
The key point is that each type of software system will have different requirements in terms of
how quickly it can/should be updated, the level of information assurance that is required, and
the organizations that will participate in development, testing, customization, and use of the

2 The Department of Defense, DoD Dictionary of Military and Associated Terms (Washington, DC:
Department of Defense, as of February 2019), 252.

https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/dictionary.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 4

software. Different statutes, regulations, and processes may be required for different types of
software (and these will differ greatly from what is used for hardware).

Having defined systems that deliver effects and the kinds of computing platforms on which
software is hosted, we now distinguish between four primary types of software, which we use
throughout the rest of the report so they we differentiate the acquisition and deployment
approaches that are needed:

● Type A (Commercial-Off-The-Shelf [COTS] apps): The first class of software consists of
applications that are available from commercial suppliers. Business processes, financial
management, human resources, software development, collaboration tools, accounting
software, and other “enterprise” applications in DoD are generally not more complicated nor
significantly larger in scale than those in the private sector. Unmodified commercial software
should be deployed in nearly all circumstances. Where DoD processes are not amenable to
this approach, those processes should be modified, not the software.

● Type B (Customized Software): The second class of software constitutes those
applications that consist of commercially available software that is customized for DoD-
specific usage. Customizations can include the use of configuration files, parameter values,
or scripted functions that are tailored for DoD missions. These applications will generally
require (ongoing) configuration by DoD personnel, contractors, or vendors.

● Type C (COTS Hardware/Operating Systems): The third class of software applications is
those that are highly specialized for DoD operations but run on commercial hardware and
standard operating systems (e.g., Linux or Windows). These applications will generally be
able to take advantage of commercial processes for software development and deployment,
including the use of open-source code and tools. This class of software includes
applications that are written by DoD personnel as well as those that are developed by
contractors.

● Type D (Custom SW/HW): This class of software focuses on applications involving real-
time, mission-critical, embedded software whose design is highly coupled to its customized
hardware. Examples include primary avionics or engine control, or target tracking in
shipboard radar systems. Requirements such as safety, target discrimination, and
fundamental timing considerations demand that extensive formal analysis, test, validation,
and verification activities be carried out in virtual and “iron bird” environments before
deployment to active systems. These considerations also warrant care in the way
application programming interfaces (APIs) are potentially presented to third parties.

We note that these classes of software are closely related to those described in the 1987 DSB
study on military software, where they categorized software as “standard” (roughly capturing
types A and B), “extended” (type C), “embedded” (type D), and “advanced” (which they
categorized as “advanced and exploratory systems,” which are not so relevant here).

https://apps.dtic.mil/docs/citations/ADA188561
https://apps.dtic.mil/docs/citations/ADA188561

DIB SWAP Study Preliminary Release, 21 Mar 2019 5

1.3 What Kind of Software Will We Have To Build?

The competitor that can realize software-defined military capability the fastest wins all future
conflicts. We must shorten our development cycles from years to months so that we can react
and respond within the observe-orient-decide-act (OODA) loop of the threats we face. Agile
methodologies enable this rapid cycle approach (see “Detecting Agile BS” in Appendix E for
more information about agile methodologies) and in addition to development we will need to test
and validate software in real-time as part of the integrated approach agile demands. Quality
assurance needs to be a continuous and fully integrated process throughout every phase of the
software cycle. We need to build software logistic trains that are able to develop and deploy
software and provide updates as quickly as modern day commercial companies so that we can
respond to new threats (especially when the target will be our software). We must treat
software as a continuous service rather than as block deliverables. It is important to have the
agility in our procurement approach that will allow program managers to change priorities based
on the needs and timing of the end users.

In the near feature, the DoD’s acquisition and use of business systems should closely mirror
industry and the private sector. The DoD should modify its processes to mimic industry’s best
practices (see Section 2.1 for examples of best practices in industry) rather than try to contract
and maintain customized software.

DoD should also adopt commercial logistics and mission planning software (COTS) wherever
possible and reduce its reliance on government-off-the-shelf (GOTS) solutions. Good logistics
and mission software reduces process complexity, improves situational awareness, reduces
costs, simplifies planning while improving speed of delivery and streamlines performance.

Software defined systems should be easier to develop, maintain, and upgrade than classic
embedded systems. A well-designed system would allow new capabilities that can be delivered
directly to edges of the network from the cloud in the same way new capabilities are delivered to
consumer smart devices.

DoD should manage software by measuring value delivered to the user rather than by
monitoring compliance with requirements. Accountability should be for delivering value to the
customer and solving customer needs, not by complying with obsolete contracts and
requirements documents.

Program managers must identify potential problems earlier (ideally, within months) and take
corrective action quickly. Troubled programs need to fail quickly, and we need to learn from
them. As we witnessed throughout our work on this study, many software programs are too big,
too complex, and take too long to deliver any value to users. Development needs to be staged
and follow the best practice of smaller, quicker deliverables with higher frequency of updates
and new features. Initially, program development should focus on developing the minimum
viable product delivered more quickly to the customer than traditionally run programs.

Software developers within our defense community need the same modern tools, systems,
environments, and collaboration resources that commercial industry has adopted as standard.

DIB SWAP Study Preliminary Release, 21 Mar 2019 6

Without this, we are undermining the effectiveness of our software developer base, and our
ability to attract and retain our software human capital, both within DoD and among our
suppliers. With the introduction of new technologies like machine learning and artificial
intelligence and the ever-increasing interdependency between networked heterogeneous
systems, software complexity will continue to increase logarithmically. We need to continuously
invest in new development tools and environments including simulation environments,
modeling, automated testing and validation tools. We must invest in research and development
into new technologies and methodologies for software development to help the Department
keep up with ever growing complexity of defense systems.

1.4 What Are the Challenges That We Face (and Consequences of Inaction)?

The world is changing. The United States used to be the dominate supplier of software and the
world leader in software innovation. That is no longer the case. Due to the global digital
revolution driven by the consumer and commercial markets, countries are building their own
indigenous software capabilities and their own technology clusters. Countries like China are
making huge investments in AI and cyber. China’s 2030 plan envisions a $1 trillion dollar
artificial intelligence industry in China. They want to become a cyber superpower and are
investing in their capital markets, universities, research centers, defense industry, and
commercial software companies.

The potential long-term consequences of inaction is that our adversaries’ software capabilities
could catch and surpass ours. If that happens, then our adversaries would be able to develop
new capabilities and potentially iterate faster than we can. They could respond to our defense
systems faster than we can respond to theirs. If their algorithms and AI becomes superior to
ours, it means that they could hold a decisive advantage when any of our systems goes up
against any of theirs. And if their cyber capability becomes superior to ours, they could shut us
down, cause chaos, continue to steal our secrets at their choosing and without repercussion –
especially if we could not attribute those attacks. Our adversaries’ software capabilities are
growing rapidly. If we do not keep pace, we could lose our defense technology advantage within
a decade or much sooner.

DIB SWAP Study Preliminary Release, 21 Mar 2019 7

Chapter 2. What Does It Look Like to Do Software Right?

In many cases, the software acquisition approaches and practices in place within DoD today
look strange and perplexing to those familiar with commercial software practices. While the
mission-, security-, and safety-critical nature of DoD’s software in the context of embedded
weapons will have an impact on practices, the extreme degree of divergence from
contemporary commercial practice has been an area of our focus. Our case studies, site visits,
and other study activities allowed a closer look into the reasons for divergence and whether the
absence of many commercial best practices is justified.

2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps

Modern software companies must develop and deliver software quickly and efficiently in order to
survive in a hyper-competitive environment. While it is difficult to characterize the entire
software sector, the following set of practices—based on documented approaches in industry3—
are representative of commercial environments where the delivery of software capability
determines the success or failure of the company. These practices generally hold true in other
industries where companies have unexpectedly found themselves in the software business due
to an increasing reliance on software to provide their key offerings—e.g. automotive, banking,
healthcare, and many others. In any environment, software engineering practices must be
matched with the recruitment and retention of talented software expertise. These practices must
be honed over time and adapted to lessons learned.

Generally, successful software companies have developed best practices in three categories:

Software development. These are software engineering practices that include source code
management, software build, code review, testing, bug tracking, release, launch and post-
mortems. Some of the key best practices that are applicable to DoD software programs include:

● All source code is maintained in a single repository that is available to all software
engineers. There are control mechanisms to manage additions to the repository but in some
cases all engineers are culturally encouraged to fix problems, independent of program
boundaries.

● Developers are strongly encouraged to avoid “forking” source code (creating independent
development branches) and focus work on the main branch of the software development.

● Code review tools are reliable and easy to use. Changes to main source code typically
require review by at least one other engineer and code review discussions are open and
collaborative.

● Unit test is ubiquitous, fully automated, and integrated into the software review process.
Integration, regression, and load testing are also widely used and these activities should be
an integrated automated part of daily workflow..

● Releases are frequent - often weekly. There is an incremental staging process over several
days, particularly for high-traffic, high-reliability services.

3 Fergus Henderson, “Software Engineering at Google” (arXiv:1702.01715 [cs.SE], January 31, 2017).

https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 8

● Post-mortems are conducted after system outages. The focus of the post-mortem is on how
to avoid problems in the future and not about affixing blame.

Project management. Software projects must contribute to the overall aim of the business and
efforts must be aligned to that end goal.

● Individuals and teams set goals, quarterly and annually. Progress against those goals are
tracked, reported, and shared across the organization. Goals are mechanisms to encourage
high performance but can be decoupled from performance appraisal or compensation.

● Organic project approval process. Significant latitude to initiate projects is given at all levels,
with oversight responsibility given to managers and executives to allocate resources or
cancel projects.

People management. Given the scarce number of skilled software engineers, successful
software companies know how to encourage and reward good talent. Some examples include:

● Clear separation between engineering and management roles, with advancement paths for
both. Technical career progression, e.g. advanced and senior developers, fellows and
senior fellows, parallel management career ladders, carry similar compensation and accrue
comparable respect within the organization. Similar distinctions are made between technical
management and people management. The ratio of software engineers to product
managers and program managers ranges from 4:1 to 30:1.

● Mobility throughout the organization is encouraged. This allows for the spread of technology,
knowledge, and culture throughout the company.

In addition to these specific software development practices, another common approach to
managing programs in industry is to move away from the specifications and requirements
approach towards a feature management approach. This approach allows program managers to
make agile decisions based on evolving needs and capabilities. Using a feature management
approach, a program manager has a list of features and capabilities ranked by need, risk, cost,
resource, and time. This list of capabilities is two to three times larger than what generally can
be accomplished within a given time frame, a given budget, and a set of resources. Program
managers make decisions about the feature mix, matching investments to needs, and balancing
risk against performance. Capabilities are tested and delivered on a continuous basis, and
maximum automation is leveraged for testing.

In industry, software programs initially start as a minimum viable product (MVP). A minimum
viable product has just enough features to meet basic minimum functionality. It provides the
foundational capabilities upon which improvements can be made. MVPs have significantly
shorter development cycles than traditional waterfall approaches. The goal of MVPs is to get
basic capabilities into users hands for evaluation and feedback. Program managers use the
evaluation and feedback results to rebalance and re-prioritize the software capability portfolio.

Portfolio success is measured based on performance of the delivery of capabilities as measured
against users’ need and strategic objectives within an investment cycle. Value is determined by
output measurements rather than process measurements. Portfolio value is the aggregation of

DIB SWAP Study Preliminary Release, 21 Mar 2019 9

total value of all of the capabilities delivered divided by total cost invested within a period of
time.

Blending higher risk/higher reward capabilities with lower risk/lower reward capabilities is the art
of good portfolio management. Within a given period of time, program managers will use
diversification to spread risk and rewards. Good program managers identify troubled projects
early and are encouraged either to quickly correct the problems or to quickly abandon failing
efforts so that remaining resources can be husbanded and then reallocated to other priorities.

Software budgets are driven by time, talent, compute resources, development environment, and
testing capabilities required to deliver capabilities. The capability and cost of talent varies
greatly between software engineers, designers, programmers, and manager. The quality of
engineering talent is the single largest variable that determines cost, risk, and time of a software
project. Good portfolio managers must take inventory of the range of software talent within a
program and carefully allocate that talent across the portfolio of capabilities development.

2.2 Empowering the Workforce: Building Talent Inside and Out

One of the biggest barriers to the software capabilities the Department so desperately needs is
how the Department manages the people necessary to build that capability. DoD cannot
compete and dominate in defense software without a technical and design workforce within the
Department that can both build software natively and effectively manage vendors to do the
same, using the proven principles and practices described above. Some of the Department’s
human capital practices actively work against this critical goal.

If the Department wants to be good at software, it must be good at recruiting, retaining,
leveraging, managing, and developing the people who make it. When we look at private sector
organizations and institutions that effectively use software to fulfill their mission, they each:

● Understand the software professionals that it has, understands its workforce needs at a high
level, and understands the gap between the two; we say “at a high level” because the DIB
believes that the gap is large enough that it is much more important to begin closing the gap
than it is to measure the gap with too much precision.

● Have a strategy to recruit the people and skills it needs to fulfill its mission, understanding
what it uniquely has to offer in a competitive market.

● Clearly understand the competencies required by software professionals in the organization
and the expectations of these professionals at each level in the organization.

● Define career ladders for technical professionals that map software competencies and
expectations from entry level to senior technical leadership and management.

● Offer opportunities for learning and mentorship from more senior engineering and design
leaders.

● Count engineering and design leaders among its most senior leadership, with the ability to
advocate across silos for the needs of the software and software acquisition workforce and
support other senior leaders in understanding how to work with both.

● Support a cadre of leadership able and empowered to create a culture of software
management and promote common approaches, practices, platforms and tools, while

DIB SWAP Study Preliminary Release, 21 Mar 2019 10

retaining the ability to use judgement about when to deviate from those common
approaches and tools.

● Reward software professionals based on merit and demonstrated contribution rather than
time in grade.

These are not descriptors for the software workforce in today’s DoD.

The DoD has long recognized that medicine and law require specialized skills, continuing
education, and support and made it not only possible but desirable and rewarding to have a
career as a doctor or lawyer in the armed forces. In contrast, software developers, designers,
and managers in the services must practice their skills intermittently and often without support
as they endure frequent rotations into other roles. DoD does not expect a trained physician to
constantly rotate into deployments focused on aviation maintenance, nor does it interrupt the
training of a lawyer to teach her human resources. Who would be comfortable being treated by
a physician who worked in an institution that lacked common standards of care and provided no
continuing education? And though software is often a matter of life and death, the DoD’s current
human capital practices do all of these.

The process to retool human capital practices to meet the challenge of software competency in
the DoD must start with the people the DoD already has who have software skills or who are
interested in acquiring them. Unlike medicine, software skills can be acquired through self-
directed and even informal training resources such as on-demand, online webinars, coding
coding boot camps, etc., and the Department has military and civilian individuals, who have
taken it upon themselves to gain technical skills outside of or in addition to formal DoD training.
This kind of initiative and aptitude, especially when it results in real contribution to the mission,
should be rewarded with appropriate career opportunities for advancement in this highly sought-
after specialty. As we have witnessed during site visits for this study, there are also many
individuals with more formally recognized software skills who are working with determination
and even courage to try to deliver great software in service of the mission, but whose efforts to
practice modern software techniques are poorly supported, and often actively blocked. Changes
to policy that make clear the Department’s support for these practices will help, but they must be
married with support for the individuals to stay and grow within their chosen field. Possible
human capital pathways might include:

● A core Civilian Occupational Series for software development that includes subcategories to
address the various duties found in modern software development (e.g., developers/
engineers, product owners, designers, etc.)

● A secondary specialty series/designator for military members for software development.
Experts come from various backgrounds and a special secondary designator or
occupational series for service members would be invaluable to tapping into their expertise
even if they are not part of the core “Information Technology” profession.

● A Special Experience Identifier or other Endorsement for military and civilian acquisition
professionals that indicates they have the necessary experience and training to serve on a
software acquisition team. This Identifier or Endorsement needs to be a mandatory
requirement to lead the acquisition team for any software procurement. Furthermore, this

DIB SWAP Study Preliminary Release, 21 Mar 2019 11

Identifier or Endorsement needs to be expanded to the broader team working the software
procurement to include legal counsel, contract specialists, and financial analysts.

In addition, our recommendations contain over a dozen ways that DoD can improve its technical
recruiting, including the idea of giving all new recruits a software aptitude test to identify
potential trainees.

2.3 Getting It Right: Better Oversight AND Superior National Security

Getting software right in in the Department requires more than changing development practices;
oversight (and budgeting and finance) must also change. Those responsible for oversight of
DoD software projects will need to learn to ask different questions and require different kinds of
information on different tempos, but their reward will be more clarity, greater satisfaction with
military software investments, and ultimately, stronger national security.

Some rules of thumb for those in appropriations and oversight roles over DevSecOps projects
include:

Expect value to the user earlier. Oversight of monolithic, waterfall projects has generally focused
around whether the team hit pre-determined milestones that may or may not represent actual value or
even working code, and trying to figure out what to do when they do not. When evaluating and
appropriating funds to agile projects, it is more suitable to judge the project on the speed by which it
delivers working code and actual value to users. In a waterfall project, changes to the plan generally
reflect the team falling behind and are cause for concern. In a project that is agile and takes advantages
of the other approaches the DIB recommends (including software reuse), the plan is intended to be
flexible because the team should be learning what works as they code and test.

Ask for meaningful metrics. Successful projects will develop metrics that measure value to the
user, which involves close, ongoing communication with users. Source Lines of Code is not a
measure of value and should not be used to evaluate projects in any case, as its use creates
perverse incentives.

Assign a leader and hold them accountable.4 Part of the role of oversight is to ensure that there
is a single leader who is qualified to lead in a DevSecOps framework and has the authority and
responsibility to make the decisions necessary for the project to succeed. That person should
be able to assign tasks and work elements, make business, product, and technical decisions,
and manage the feature and bug backlogs. This person is ultimately responsible for how well
the software meets the needs of its users, which is how the project should be evaluated.

Clarity and quality of leadership has long been tied to successful defense programs. Kelly
Johnson with the U-2, F-104, SR-71. Paul Kaminski with stealth technology. Admiral Hyman
Rickover with the nuclear navy. Harry Hillaker with the F-16. Bennie Schriever with the
intercontinental ballistic missile. The list goes on. The United States Digital Service recognized

4 This recommendation is borrowed directly from the United States Digital Service Playbook, Play 6:
https://playbook.cio.gov/#plays_index_anchor.

DIB SWAP Study Preliminary Release, 21 Mar 2019 12

this with Play 6 of the Digital Services Playbook - Assign One Leader and Hold That Person
Accountable. We would do well to remember this part of our history and work this into our
oversight plan.

Speed increases security. Conventional wisdom in the DoD says that programs must move
slowly because moving quickly would threaten security. Often, the opposite is true. As we have
learned from the cyber world, when we are facing active threats, our ability to have faster
detection, response, and mitigation reduces the consequences of an attack or breach. In the
digital domain, where attacks can be launched at machine speeds, where Artificial Intelligence
(AI) and Machine Learning (ML) can probe and exploit vulnerabilities in near real-time, our
current ability to detect, respond, and mitigate against digital threat leaves our systems
completely vulnerable to our adversaries.

The Department of Defense (DOD) faces mounting challenges in protecting its weapon
systems from increasingly sophisticated cyber threats. This state is due to the
computerized nature of weapon systems; DOD's late start in prioritizing weapon systems
cybersecurity; and DOD's nascent understanding of how to develop more secure
weapon systems. DOD weapon systems are more software dependent and more
networked than ever before…. Potential adversaries have developed advanced cyber-
espionage and cyber-attack capabilities that target DOD systems.

GAO-19-128: Published: Oct 9, 2018. Publicly Released: Oct 9, 2018

The DoD must operate within our adversaries’ digital OODA loop. Much like today’s consumer
electronic companies, the Department needs the ability to identify and mitigate evolving
software and digital threats and to push continuous updates to fielded systems in near real-time.

We must be able to do so without sacrificing our abilities to test and validate software. To
accomplish this, we need to re-imagine the software development cycle as a continuous flow
rather than discrete software block upgrades. We need to not only modernize to the agile
methodology of software development, but we must also modernize our entire suite of
development and testing tools and environments. We need to be able to instrument our fielded
systems so that we can build accurate synthetic models that can be used in development and
test. The Department needs to be able to patch, update, enhance, and add new capabilities
faster than our adversaries’ abilities to exploit vulnerabilities.

Colors of money doom software projects. The foundational reasons for specific Congressional
guidance into how money is to be spent make sense. But, because software is in continuous
development (it is never “done” - see Windows, for example), colors of money tend to doom
programs. We need to create pathways for “bleaching” funds to smooth this process for long
term programs.

Don’t pay for the factory every time you need a car. Appropriators must realize that the DoD
desperately needs common infrastructure if it’s to increase the speed and quality of the software
it produces. Today, it’s as if the Department were buying cars but paying for the entire factory to
build each one separately. Appropriators should fund the smart development of common

DIB SWAP Study Preliminary Release, 21 Mar 2019 13

infrastructure and reward its use in individual programs and projects. Evaluators should be wary
of programs and projects that fail to articulate how they are taking advantage of common
infrastructure and reusable components.

Standard is better than custom. In the same vein as the above, appropriators and evaluators
should understand the benefits of using standards from the software development industry.
Standards enable quality, speed, adoption, cost control, sustainability and interoperability.

Technical debt is normal and it’s worth investing to pay it down. Appropriators and evaluators
should understandably expect to see progress in terms of features on a regular basis. The
exceptions are when software teams must pay down what’s known as “technical debt” or
refactor code for greater performance. (This often results in fewer lines of code but higher
performance, which is why it’s a mistake to judge a software project based on the number of
lines of code.) These periodic investments are to be expected on a DevSecOps project, and
necessary to ensure the overall quality and stability of the project.

Use data as a compass, not a grade. Too often, evaluators and appropriators receive data
about a program that suggest it is failing, but by the time they receive it, there’s not much to be
done about it. Data is collected manually, then processed and presented, and by the time its
being discussed it’s out of date. Mostly what happens at this point is that the project is given a
poor grade, which makes the teams increasingly risk averse and demoralized. Instead, projects
should be instrumented -- equipped with built-in ways of seeing how and where they’re going --
so that the data is available both to the teams and to evaluators in time to make adjustments. In
this model, the data is more like a compass, helping all parties to make small corrections quickly
to avoid the poor grade. A great oversight function will help steer projects and hold them
accountable, rather than punish poor performance.

2.4 What’s the R&D Strategy for Our Investment?

The nature of software development may radically change in the near future. It is incumbent that
the Department of Defense adequately fund R&D programs to advance the fields of computer
science including: computer programming, artificial intelligence/machine learning, autonomy,
quantum computing, networks and complex systems, man-machine interfaces and
cybersecurity.

Today, computers are controlled by programs that are comprised of sets of instructions and
rules that human programmers write. AI and ML changes how humans teach computers.
Instead of providing computers with programmed instructions, humans will train or supervise the
learning algorithm being executed on the computer. Training is inherently different than
programming. Data becomes more important than code. Training errors are very different than
programming errors. Hacking AI is very different than hacking code. The use of synthetic
environments and digital twins may also become increasingly important tools to train a
computer. The impact of AI and ML on software development will be profound and necessitates
entirely new approaches and methods of developing software.

DIB SWAP Study Preliminary Release, 21 Mar 2019 14

New computing technologies are also on the horizon. Experts may agree that we are many
years away from developing a Universal Quantum Computer (UQC), a generally programmable
computer combining both classical and quantum computing elements. Nevertheless, the United
States cannot afford to come in second in the race to develop the first UQC. The challenge is
not only confined to the development of the UQC hardware but in developing QC programming
languages and software. We also need to continue to invest in new quantum resistant
technologies such as cryptography and algorithms and apply those technologies as soon as
possible to protect today’s data and information from tomorrow's UQC attacks.

The field of computer science continues to advance with the discovery and development of new
computer architectures and designs. We have already seen the impact of new architectures
such as cloud computing, GPU (Graphics Processing Units), low-power electronics and Internet
of Things (IoT) on computing. New architectures are being studied and developed by both
industry and academia. The DoD should not only continue to invest in the development of new
architectures but also to invest in new methods for quicker adoption of these technologies.

Given today's challenge of cybersecurity and software assurance, R&D must continue into
developing more trusted computing to thwart future cyber attacks and being able to execute
software with assurance on untrusted networks and hardware.

The DoD should invest in new approaches to software development (beyond agile), including
the use of computer assisted programming and project management. While the Agile
development process is currently the best practice in industry, managing the software cycle is
still more art form than science. New analytical approaches and next generation management
tools could significantly improve software performance and schedule predictability. The
Department should fund ongoing research as well as support academic, commercial, and
development community efforts to innovate the software process.

DIB SWAP Study Preliminary Release, 21 Mar 2019 15

Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?

DoD and Congress have a rich history of asking experts to assess the state of DoD software
capabilities and recommend how to improve them. A DoD joint task force chaired by Duffel in
1982 started their report by saying:

Computer software has become an important component of modern weapon systems. It
integrates and controls many of the hardware components and provides much of the
functional capability of a weapon system. Software has been elevated to this prominent
role because of its flexibility to change and relatively low replication cost when compared
to hardware. It is the preferred means of adding capability to weapon systems and of
reacting quickly to new enemy threats
Report of the DoD Joint Service Task Force on Software Problems, 1982.

Indeed, this largely echoes our own views, though the scope of software has now moved well
beyond weapons systems, the importance of software has increased even further, and the rate
of change for software is many orders of magnitude faster, at least in the commercial world.

Five years later, a task force chaired by Fred Brooks began its executive summary as follows:

Many previous studies have provided an abundance of valid conclusions and detailed
recommendations. Most remain unimplemented. … the Task Force is convinced that
today’s major problems with military software development are not technical problems,
but management problems.
Report of the Task Force on Military Software, Defense Science Board, 1987.

This particular assessment, from over 30 years ago, referenced over 30 previous studies and is
largely aligned with the assessments of more recent studies, including this study.

And finally, in its 2000 study on DoD software, DSB Chair Craig Fields commented that

Numerous prior studies contain valid recommendations that could significantly and
positively impact DOD software development programs. However the majority of these
recommendations have not been implemented. Every effort should be made to
understand the inhibitors that prevented previous recommendations.
Defense Science Board Task Force on Defense Software, 2000.

The problem is not that we do not know what to do, but that we simply are not doing it. In this
chapter we briefly summarize some of the many reports that have come before ours and
attempt to provide some understanding of why the current state of affairs in defense software is
still so problematic. Using these insights, we attempt to provide some level of confidence that
our recommendations might be handled differently (remembering that “hope is not a strategy”).

DIB SWAP Study Preliminary Release, 21 Mar 2019 16

3.1 37 Years of Prior Reports on DoD Software

The following table lists previous reports focused on improving software acquisition and
practices within DoD

Date Org Short title / Summary of contents

Jul’82 DoD Joint Service Task Force on Software Problems
37 pp + 192 pp Supporting Information (SI); 4 major recommendations
The opportunities and problems posed by computer software embedded in DoD weapon
systems were investigated by a joint Service task force. Existing studies were combined with
the observations of DoD project managers by the software experienced task force members.
The task force concluded that software represents and important opportunity in regard to the
military mission. Further, it was concluded that technological excellence in software is an
important factor in maintaining U.S. military superiority, but that many problems facing DoD in
software endangers this superiority.

Sep’87 DSB Task Force on Military Software
41 pp + 36 pp SI; 38 recommendations
The task force reviewed current DoD initiatives in software technology and methodology,
including the Ada effort, the STARS program, DARPA's Strategic Computing Initiative, the
Software Engineering Institute, and a planned program in the Strategic Defense Initiative. The
five initiatives were found to be uncoordinated, and the task force recommended that the
Undersecretary of Defense (Acquisition) establish a formal program coordination mechanism
for them. In spite of the substantial technical development needed in requirements-setting,
metrics and measures, tools, etc., the Task Force was convinced that the major problems
with military software development were not technical problems, but management problems.
The report called for no new initiatives in the development of the technology, some modest
shift of focus in the technology efforts underway, but major re-examination and change of
attitudes, policies, and practices concerning software acquisition.

Dec’00 DSB Task Force on Defense Software
36 pp + 10 pp SI; 6 major recommendations
The Task Force determined that the majority of problems associated with DOD software
development programs are a result of undisciplined execution. Accordingly the Task Force's
recommendations emphasized a back-to-the-basics approach. The Task Force also noted
that numerous prior studies contain valid recommendations that could significantly and
positively impact DOD software development programs. The fact that the majority of these
recommendations have not been implemented should lead to efforts designed to understand
the inhibitors preventing these recommendations from being enacted.

2004 RAND Attracting the Best: How the Military Competes for Information Technology
Personnel
149 pp; no explicit recommendations
Burgeoning private-sector demand for IT workers, escalating private-sector pay in IT, growing
military dependence on IT, and faltering military recruiting all led to a concern that military
capability was vulnerable to a large shortfall in IT personnel. This report examined the supply
of IT personnel compared to the military’s projected future manpower requirements. It
concluded that IT training and experience, augmented by enlistment bonuses and educational
benefits as needed, seemed sufficient to ensure an adequate flow of new recruits into IT.
However, sharp increases in military IT requirements had the potential to create difficulties.

Feb’08 NCMA Generational Inertia - An Impediment to Innovation?
7 pp; no explicit recommendations
This article cites data to the effect that approximately 50 percent of the acquisition workforce
is within five years of retirement. Rather than being a problem, the article feels that retirement
of senior contracting specialists could effectively lead to acquisition reform: “Senior
contracting specialists’ resistance to change and indifference to professional development is

https://apps.dtic.mil/dtic/tr/fulltext/u2/a123449.pdf
http://www.dtic.mil/docs/citations/ADA188561
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1301305694
https://apps.dtic.mil/dtic/tr/fulltext/u2/a385923.pdf
https://www.rand.org/pubs/monographs/MG108.html
https://www.rand.org/pubs/monographs/MG108.html
http://www.ncmahq.org/docs/default-source/default-document-library/articles/cm_feb08_p44

DIB SWAP Study Preliminary Release, 21 Mar 2019 17

the elephant in the room that acquisition reformers are unwilling to acknowledge.”

Mar’09 DSB Task Force on Department of Defense Policies and Procedures for the
Acquisition of Information Technology
68 pp + 2 pp dissent + 15 pp SI; 4 major recommendations with 13 subrecommendations
The primary conclusion of the task force is that the conventional DOD acquisition process is
too long and too cumbersome to fit the needs of the many IT systems that require continuous
changes and upgrades. The task force recommended a unique acquisition system for
information technology.

2010a NRC Achieving Effective Acquisition of Information Technology in the Department of
Defense
164 pp + 16 major recommendations
This study board was asked to assess the efficacy of the DOD’s acquisition and test and
evaluation (T&E) processes as applied to IT. The study concluded that DOD is hampered by
“a culture and acquisition-related practices that favor large programs, high-level oversight,
and a very deliberate, serial approach to development and testing (the waterfall model).” This
was contrasted with commercial firms, which have adopted agile approaches that focus on
delivering smaller increments rapidly and aggregating them over time to meet capability
objectives. Other approaches that run counter to commercial, agile acquisition practices
include “the DOD’s process-bound, high-level oversight [that] seems to make demands that
cause developers to focus more on process than on product, and end-user participation often
is too little and too late.”

2010b NRC Critical Code: Software Producibility for Defense
148 pp + 15 major recommendations
This study was charged to examine the nature of the national investment in software research
and ways to revitalize the knowledge base needed to design, produce, and employ software-
intensive systems for tomorrow’s defense needs. The study notes the continued reliance by
DoD on software capabilities in achieving its mission and notes that there are important areas
where the DoD must push the envelope beyond mainstream capability. In other areas,
however, the DoD benefits by adjusting its practices to conform to government and industry
conventions, enabling it to exploit a broader array of more mature market offerings.

Jul’16 CRS The Department of Defense Acquisition Workforce: Background, Analysis, and
Questions for Congress
14 pp; no explicit recommendations
The increase in the size of the acquisition workforce has not kept pace with increased
acquisition spending, which has signified an increase not only in the workload but also the
complexity of contracting work. This report summarized four Congressional efforts aimed at
enhancing the training, recruitment, and retention of acquisition personnel.

Dec’16 CNA Independent Study of Implementation of Defense Acquisition Workforce
Improvement Efforts
147 pp + 30 pp SI; 21 major recommendations
This report examines the strategic planning of the Department of Defense (DOD) regarding
the acquisition workforce (AWF). The study found significant improvements in several areas
that “not only reversed the decline in AWF capacity from the 1990s, but also reshaped the
AWF by increasing the number of early and mid-career personnel.”

Feb’17 SEI DoD’s Software Sustainment Study Phase I: DoD’s Software Sustainment
Ecosystem - For copies please contact the Office of the Deputy Assistant Secretary
of Defense for Materiel Readiness, Pentagon.
101 pp; 5 major recommendations
Since the time in the early 1980s when software began to be recognized as important to DoD,
software sustainment has been considered a maintenance function. After almost four
decades, DoD is also at a tipping point where it needs to deal with the reality that software
sustainment is not about maintenance, but rather it is about continuous systems and software

https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.p
https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.p
http://www.nap.edu/catalog.php?record_id=12823
http://www.nap.edu/catalog.php?record_id=12823
https://www.nap.edu/catalog/12979
https://fas.org/sgp/crs/natsec/R44578.pdf
https://fas.org/sgp/crs/natsec/R44578.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 18

engineering for the life cycle to evolve the software product baseline. This report recommends
changing that paradigm to enable the innovation needed to address a rapidly changing
technology environment, specifically through investments in human capital, better
performance measurement of software sustainment, and better visibility for the software
portfolio.

Mar’17 BPC Building a F.A.S.T. Force: A Flexible Personnel System for a Modern Military
82 pp + 15 pp SI; 4 major themes with 39 recommendations
This study describes today’s DoD personnel system as out of date with contemporary needs
and issues: “the current system is typically poorly coordinated, lacks accountability, is unable
to quickly obtain specialized talent, and fosters a groupthink mentality within the force.” It
concludes that an effective personnel system has to build a force that is adaptable to new
threats as they arise and technically proficient (among other characteristics).

Feb’18 DSB Design and Acquisition of Software for Defense Systems
28 pp + 22 pp SI; 7 (high-level) recommendations + ~32 subrecommendations
The Task Force assessed best practices from commercial industry as well as successes
within the DoD. Commercial embrace of iterative development has benefited bottom lines and
cost, schedule, and testing performance, while the Department and its defense industrial
base partners are hampered by bureaucratic practices and an existing government-imposed
reward system. The Task Force concluded that the Department needs to change its internal
practices to encourage and incentivize new practices in its contractor base. The assessment
of the Task Force is that the Department can leverage best practices of iterative development
even in its mission critical software systems.

2018 2016
NDAA

Section 809 Panel - Streamlining and Codifying Acquisition [comparison]
1,275 pages, 93 recommendations
The Section 809 Panel was established by Congress in the FY 2016 NDAA to address issues
with the way DoD buys what it needs to equip its warfighters. The panel published an Interim
Report and a three-volume Final Report, containing a total of 98 recommendations aimed at
changing the overall structure and operations of defense acquisition both strategically and
tactically. Some changes hold potential for immediate effect, such as those that remove
unnecessary layers of approval in the many steps contracting officers and program managers
must take and remove unnecessary and redundant reporting requirements. Other changes
require a large shift in how the system operates, such as buying readily available products
and services in a manner similar to the private sector and managing capabilities from a
portfolio, rather than program, perspective.

Apr’19 DIB Software is Never Done; Refactoring the Acquisition Code for Competitive
Advantage (this document)
74 pp + 200 pp SI; 4 lines of effort, 10 primary and 0x10 additional recommendations
In this report, we focus on three fundamental themes: (1) speed and cycle time are the most
important metrics for managing software; (2) software is made by people, and for people, so
digital talent matters; and (3) software is different than hardware (and not all software is the
same). We provide a set of major recommendations that focus on four primary lines of effort:
(A) refactoring statutes, regulations, and processes specifically for software—including
acquisition, development, assurance, deployment, and maintenance—to remove hardware-
centric bottlenecks while providing more insight and better oversight; (B) creating and
maintaining interoperable (cross-program/cross-service) digital infrastructure to enable
continuous and rapid deployment, scaling, testing, and optimization of software as an
enduring capability; (C) creating new paths for digital talent and increasing the level of
understanding of modern software within the acquisition workforce; and (D) changing the
practice of how software is procured and developed by adopting modern software
development approaches.

Studies dating back to at least 1982 have identified software as a particular area of growing
importance to the DoD, and software acquisition as requiring improvement, and the frequency
and urgency of such studies identifying software acquisition as a major issue requiring reform

https://bipartisanpolicy.org/wp-content/uploads/2017/03/BPC-Defense-Building-A-FAST-Force.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1962200611
https://section809panel.org/
https://docs.google.com/document/d/1PsEI1P_wXY8vmNejJS3jqGf43TDaWb2cPddBK8WrgXE
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1724290712
http://innovation.defense.gov/software
http://innovation.defense.gov/software

DIB SWAP Study Preliminary Release, 21 Mar 2019 19

has increased markedly since 2010. Notable recent examples include the 2010 studies by the
National Research Council on Achieving Effective Acquisition of Information Technology in the
Department of Defense and Critical Code: Software Producibility for Defense, the 2017 study
conducted by Carnegie Mellon Software Engineering Institute (SEI) on DoD’s Software
Sustainment Ecosystem, and the 2018 DSB study on Design and Acquisition of Software for
Defense Systems.

The properties of software that contribute to its unique and growing importance to DoD are
summarized in this quote from the 2010 Critical Code study:

This growth is a natural outcome of the special engineering characteristics of software:

Software is uniquely unbounded and flexible, having relatively few intrinsic limits on the
degree to which it can be scaled in complexity and capability. Software is an abstract
and purely synthetic medium that, for the most part, lacks fundamental physical limits
and natural constraints. For example, unlike physical hardware, software can be
delivered and up-graded electronically and remotely, greatly facilitating rapid adaptation
to changes in adversary threats, mission priorities, technology, and other aspects of the
operating environment. The principal constraint is the human intellectual capacity to
understand systems, to build tools to manage them, and to provide assurance—all at
ever-greater levels of complexity.

Critical Code: Software Producibility for Defense, NRC, 2010

Prior studies have observed that much of DoD software acquisition policy is systems- and
hardware-oriented and largely does not take these unique properties into account.5

The lack of action on most of the software recommendations from these studies has also been a
subject of perennial comment. The DSB’s 2000 study noted this phenomenon:

[Prior] studies contained 134 recommendations, of which only a very few have been
implemented. Most all of the recommendations remain valid today and many could
significantly and positively impact DoD software development capability. The DoD's
failure to implement these recommendations is most disturbing and is perhaps the most
relevant finding of the Task Force. Clearly, there are inhibitors within the DoD to
adopting the recommended changes.

Task Force on Defense Software, Defense Science Board, 2000.

The situation has not changed significantly since then despite additional studies and significant
numbers of new recommendations. There is little to suggest that the inhibitors to good software
practice have changed since 2000, and it is likely that the pace of technological change and
capabilities provided by software have only increased since then.

Major categories of prior recommendations. The DIB-SWAP study team conducted a literature
review of prior work on DoD software acquisition and extracted the specific recommendations
that had been made, binning them according to major topics. The focus of the effort was on

5 E.g., “DoD’s Software Sustainment Study Phase I: DoD’s Software Sustainment Ecosystem”, SEI, 2017.

https://www.nap.edu/read/12823/chapter/1
https://www.nap.edu/read/12823/chapter/1
https://apps.dtic.mil/dtic/tr/fulltext/u2/a534043.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 20

recent studies, with the bulk of the work since 2010, resulting in 139 recommendations that
were extracted and categorized.

A few prevailing themes stood out from this body of work, representing issues that were
commented upon in multiple studies:

● Contracts: contracts should be modular and flexible
● Test and evaluation: test and evaluation should be incorporated throughout the software

process with close user engagement
● Workforce: software acquisition requires specific skills and knowledge along with user

interaction and senior leadership support
● Requirements: requirements should be reasonable and prioritized; advocacy for the need to

move from compliance-based, overly prescriptive requirements to more iterative approaches
● Acquisition strategy/oversight: DoD should encourage agencies to pursue business process

innovations
● Software process: the Department should adopt spiral/agile development approaches to reduce

cost, risk, and time.

The three areas which were dealt with most often in the prior studies were acquisition oversight,
contracting, and workforce. These three topics alone accounted for 60 percent of all of the
recommendations we compiled. We summarize the major recurring prior recommendations in
each of those areas as follows:

Recommendations from recent work in acquisition oversight:

● Ensure non-interruption of funding of programs that are successfully executing to objective
(rather than budget), while insulating programs from unfunded mandates.

● Durations should be reasonably short and meaningful and should allow for discrete progress
measurement.

● Design the overall technology maturity assessment strategy for the program or project.
● Encourage program managers to share bad news, and encourage collaboration and

communication.
● Require program managers to stay with a project to its end.
● Empower program managers to make decisions on the direction of the program and to

resolve problems and implement solutions.
● Follow an evolutionary path toward meeting mission needs rather than attempting to satisfy

all needs in a single step.

Recommendations from recent work in contracting:

● Requests for proposals (RFPs) for acquisition programs entering risk reduction and full
development should specify the basic elements of the software framework supporting the
software factory, including code and document repositories, test infrastructure, software
tools, check-in notes, code provenance, and reference and working documents informing
development, test, and deployment.

● Establish a common list of source selection criteria for evaluating software factories for use
throughout the Department.

● Contracting Officers (KOs) must function as strategic partners tightly integrated into the
program office, rather than operate as a separate organization that simply processes the
contract paperwork.

DIB SWAP Study Preliminary Release, 21 Mar 2019 21

● Develop and maintain core competencies in diverse acquisition approaches and increase
the use of venture capital type acquisitions such as Small Business Innovative Research
(SBIR), Advanced Concept Technology Development (ACTD), and Other Transaction
Authority (OTA) as mechanisms to draw in non-traditional companies.

Recommendations from recent work on workforce issues:

● The service acquisition commands need to develop workforce competency and a deep
familiarity of current software development techniques.

● The different acquisition phases require different types of leaders. The early phases call for
visionary innovators who can explore the full opportunity space and engage in intuitive
decision-making. The development and production phases demand a more pragmatic
orchestrator to execute the designs and strategies via collaboration and consensus
decisions.

● U.S. Special Operations Command (USSOCOM) must develop a unique organizational
culture that possesses the attributes of responsiveness, innovation, and problem solving
necessary to convert strategic disadvantage into strategic advantage.

● Encourage employees to study statutes and regulations and explore innovative and
alternative approaches that meet the statutory and regulatory intent.

● Rapid acquisition succeeds when senior leaders are involved in ensuring that programs are
able to overcome the inevitable hurdles that arise during acquisition, and empower those
responsible with achieving the right outcome with the authority to get the job done while
minimizing the layers in between.

To help illustrate the continuity of the history of these issues and the lack of progress despite
consistent, repeated similar findings, we consider the case of recommendations related to
software capabilities of the acquisition workforce (areas where we are also recommending
change).

Calls to improve DoD’s ability to include software expertise in its workforce have a long history.
DoD studies dating back to 1982 have raised concerns about the technical competencies and
size of DoD’s software workforce [DSB’82, DSB’87]. In 1993, the DoD Acquisition Management
Board identified a need to review the DoD’s software acquisition management education and
training curricula. This study concluded that no existing DoD workforce functional management
group was responsible for the software competencies needed in the workforce and that software
acquisition competencies were needed in many different acquisition career fields. However, the
Board asserted that no new career field was needed for Software Acquisition Managers. In
2001, the same concerns regarding the software competencies of the DoD acquisition
workforce once again surfaced. The DoD Software Intensive Systems Group conducted a
software education and training survey of the acquisition workforce. This survey demonstrated
that less than 20 percent of the ACAT program staff had taken the basic Software Acquisition
Management course (SAM 101) and that less than 20 percent of the ACAT program staff had
degrees in computer science, software engineering, or information technology. The specific
recommendations from this analysis included: (1) institute mandatory software intensive
systems training for the workforce; (2) develop a graduate-level program for software systems
development and acquisition; and (3) require ACAT 1 programs to identify a chief software/
systems architect.

DIB SWAP Study Preliminary Release, 21 Mar 2019 22

A year later, Congress mandated that the Secretary of each military department establish a
program to improve the software acquisition processes of that military department.
Subsequently each Service established a strategic software improvement program (Army 2002,
Air Force 2004, and Navy 2006). These Service initiatives have continued at some level.
However, with the sun-setting of the Software Intensive Systems Group at the OSD level, the
enterprise focus on software waned. During this same period, the Navy started the Software
Process Improvement Initiative (SPII), which identified issues preventing software-intensive
projects from meeting schedule, cost, and performance goals. This initiative highlighted the lack
of adequately educated and trained software acquisition professionals and systems engineers.

In 2007, OSD issued guidance to create the Software Acquisition Training and Education
Working Group (SATEWG) with a charter to affirm required software competencies, identify
gaps in Defense Acquisition Workforce Improvement Act (DAWIA) career fields, and to develop
a plan to address those gaps. This group was composed of representatives from the Services,
OSD, and other organizations, including Carnegie Mellon SEI. The group developed a software
competency framework that identified four key knowledge areas and 29 competencies that
could inform the different acquisition workforce managers as to the software competencies to be
integrated into their existing career field competency models. There has been no follow-on effort
to evaluate the progress of the SATEWG or its outcomes.

Today, in the absence of a DoD-wide approach to describing, managing, and setting goals
against a common understanding of needed software skills, each Service (as well as software
sustainment organizations) has evolved its own approach or model for identifying software
competencies for its workforce.

This historical context highlights two key points. First, DoD has long recognized the challenges
of addressing the technical competencies and size of the software workforce across the life
cycle. However, there is limited evidence of the outcomes from these different efforts. Secondly,
this history clearly indicates that acquiring software human capital and equipping that workforce
with the necessary competencies is a persistent and dynamic challenge that demands a
continuous enterprise strategy.

3.2 Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be
Different

Given the long and profound history of inaction on past studies, we have attempted to create
our own “Theory of (Non)Change.” Why does the Department struggle to step up to rational,
generally agreed-upon change? We offer the following three drivers:

The (Patriotic and Dutifully) Frozen Middle. Our process in executing this study has been to talk
to anyone and everyone we could within various departments of DoD and the Services, to
gather as many different perspectives as possible on what is needed, and to find out what is
working and what needs to be stomped upon. As with many change management opportunities
we find significant top-down support for what we are trying to do, especially from those who see
the immediate need for more, better, faster mission capability and those who are directly
frustrated at the command level by the current processes that are just not working. At the other
end, we see digital natives demanding change but with limited power to make it happen; people

DIB SWAP Study Preliminary Release, 21 Mar 2019 23

who are fully enmeshed in how the tech world works, people who have all the expectations that
have been created by their private sector lifestyle and economy. And then we have the middle,
who are dutifully following the rules, and have been trained and had success defined for a
different world. For the middle, new methodologies and approaches introduce unknown risks,
while the old acquisition and development approaches built the world's best military. We
question neither the integrity nor the patriotism of this group. They are simply not incentivized to
the way we believe modern software should be acquired and implemented, and the enormous
inertia they represent is a profound barrier to change.

Unrequited Congress. Congress is responsible for approving and overseeing the Department's
development programs. While it is clear that Congress takes its oversight role seriously, it does
so knowing that to have oversight requires something to oversee, and it understands its
fundamental responsibility is to enable the Department to execute its mission. But oversight
matters, and recommendations for change that do not also provide insight into how new ways of
doing things will allow Congress to perform its role are a very tough sell. In addition, there is a
sense of unrequited return from past changes and legislation such as Other Transaction
Authorities (OTAs), pilot programs and special hiring authorities. In many cases, Congress
believes it has already provided the tools and flexibilities for which the Department has asked. It
is perhaps unreasonable to expect a positive response to ask for more when current
opportunities have not been fully exploited.

Optimized Acquisition (for Something Else!).

 Knowing was a barrier which prevented learning. —Frank Herbert

While some may (justifiably) argue that the current acquisition system is not optimized for
anything, it is the product of decades of rules upon rules, designed to speak to each and every
edge case that might crop up in the delivery of decades-long hardware systems, holds risk
elimination at a premium, and has a vast cadre of dedicated practitioners exquisitely trained to
prosper within that system. This is a massive barrier to change and informs our
recommendations that argue for major new ways of acquiring software and not just attempt to
reoptimize to a different local maximum.

What we are trying to do that we think is different. Given the long history of DoD and
Congressional reports that make recommendations that are not implemented, why do we think
that this report is going to be any different? Our approach has been to focus not on the report
and its recommendations per se, but rather on the series of discussions around the ideas in this
report and the people we have interacted with inside the Pentagon and at program site visits.
The recommendations in this report thus serve primarily as documentation of a sequence of
iterative conversations and the real work of the report is the engagements before and after the
report is released.

We also believe that there are some ideas in the report that, while articulated in many places in
different ways, are emphasized differently here. In particular, a key point of focus in this report
is the use of speed and cycle time as the key drivers for what needs to change and optimizing
statutes, regulations, and processes to allow management and oversight of software. We

DIB SWAP Study Preliminary Release, 21 Mar 2019 24

believe that optimizing for the speed at which software can be utilized for competitive advantage
will create an acquisition system that is much better able to provide security, insight, and scale.

Finally, we have tried to make this report shorter and pithier than previous reports, so we hope
people will read it. It also is staged so that each reader, with their specific levels of authority and
responsibility, can navigate an efficient path to reaching their conclusions on how best to
support what is contained here.

3.3 Consequences of Inaction: Increasing Our Attack Surface and Shifting Risk to the
Warfighter

So, what happens if history does, in fact, repeat itself and we again fail to step up to the
changes that have been so clearly articulated for so long? Certainly by continuing to follow
acquisition processes designed to limit risk for the hardware age, we will not reduce risk but
instead will simply transfer that risk to the worst possible place—the warfighter who most needs
the tools in her arsenal to deliver the missions we ask her to perform. But in addition, as we
have continually stressed throughout this study, there are several real differences in today’s
world compared to the environment in which past efforts were made.

First, and most important, weapons systems, and the bulk of the operational structure on which
DoD executes its mission, are now fundamentally software (or software-defined) systems, and
as such, delays in implementing change amplify the capability gaps that slow, poor, or
unsupportable software creates. Second, the astonishing growth of the tech sector has created
a very different competitive environment for the talent most needed to meet DoD’s needs.
Decades ago, DoD was the leading edge of the world’s coolest technology and passionate,
skilled software specialists jumped at the chance to be at that edge. That is simply not the case
today and while a commitment to national security is a strong motivator, if the changes
recommended in this study are not implemented, the competitive war for talent, within our
country, will be lost.

The modern software methodologies enumerated in this report – and the recommendations
concerning culture, regulation and statute, and career trajectories that enable those
methodologies – are the best path to providing secure, effective, and efficient software to users.
Cyber assurance, resilience, and relevance are all delivered much more effectively when done
quickly and incrementally, using the tools and methods recommended in this study.

Finally we call attention back to Section 1.4 (What are the challenges that we face [and
consequences of inaction]?). To summarize: “The long-term consequence of inaction is that our
adversaries’ software capabilities can catch and surpass ours… Our adversaries’ software
capabilities are growing as ours are stagnating.”

DIB SWAP Study Preliminary Release, 21 Mar 2019 25

Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward

The previous three chapters provided the rationale for why we need to do (not just say)
something different about how DoD develops, procures, assures, deploys, and continuously
improves software in support of defense systems. The private sector has figured out ways to
use software to accelerate their businesses and DoD should accelerate its incorporation of
those techniques to its own benefit, especially in ensuring that its warfighters have the tools they
need in a timely fashion to execute their missions in today’s software-dominated environment.
In this chapter, we lay out three different paths for moving forward, each under a different set of
assumptions and objectives. A list of some representative, high-level steps are provided for
each path, along with a short analysis of advantages and weaknesses.

4.1 Path 1: Make the Best Out of What We’ve Got

Congress has provided DoD with substantial authority and flexibility to implement the mission of
the DoD. Although difficult and often inefficient, it is possible to implement the recommendations
outlined in this report making use of the existing authorities and, indeed, there are already
examples of the types of activities that we envision taking place across OSD and the Services.
In this section, we attempt to articulate a path that builds on these successes and does not
require any change in the law nor major changes in regulatory structure. The primary steps
required to implement this path should focus on changing the practice by which software is
developed, procured, assured, and deployed as well as updating some of the regulations and
processes to facilitate cultural and operational changes.

To embark on this first path, DoD should streamline its processes, allowing more rapid
procurement, deployment, and updating of software. OSD and the Services should also work
together to allow better cross-service and pre-certified ATOs, easier access to large-scale cloud
computing, and use of modern tool chains that will benefit the entire software ecosystem. The
acquisition workforce, both within OSD and the Services, should be provided with better training
and insight on modern software development (one of the more frequent recommendations over
the past 37 years) so that they can take advantage of the approaches that software allows that
are different than hardware. Most importantly, government and industry must come together to
implement a DevSecOps culture and approach to software, building on practices that are
already known and used in industry.

The following list provides a summary of high-level steps that require changes to DoD culture
and process, but could be taken with no change in current law and relatively minor changes to
existing regulations:

● Make use of existing authorities such as OTAs and mid-tier acquisition (Sec 804) to
implement a DevSecOps approach to acquisition to the greatest extent possible under
existing statutes, regulations, and processes.

DIB SWAP Study Preliminary Release, 21 Mar 2019 26

● Require cost assessment and performance estimates for software programs (and software
components of larger programs) to be based on metrics that track speed and cycle time,
security, code quality, and useful capability deliver to end users.

● Create a mechanism for ATO reciprocity between Services and industrial base companies to
enable sharing of software platforms, components and infrastructure and rapid integration of
capabilities across (hardware) platforms, (weapons) systems, and Services.

● Remove obstacles to DoD usage of cloud computing on commercial platforms, including
Defense Information System Agency (DISA) cloud access point (CAP) limits, lack of ATO
reciprocity, and access to modern software development tools.

● Expand the use of (specialized) training programs for chief information officers (CIOs),
service acquisition executives (SAEs), program executive officers (PEOs), and program
managers (PMs) that provide (hands-on) insight into modern software development (e.g.,
agile, DevOps, DevSecOps) and the authorities available to enable rapid acquisition of
software.

● Increase the knowledge, expertise, and flexibility in program offices related to modern
software development practices to improve the ability of program offices to take advantage
of software-centric approaches to acquisition.

● Require access to source code, software frameworks, and development toolchains, with
appropriate intellectual property (IP) rights, for all DoD-specific code, enabling full security
testing and rebuilding of binaries from source.

● Create and use automatically generated, continuously available metrics that emphasize
speed, cycle time, security, and code quality to assess, manage, and terminate software
programs (and software components of hardware programs).

● Shift the approach for acquisition (and development) of software (and software- intensive
components of larger programs) to an iterative approach: start small, be iterative, and build
on success – or be terminated quickly.

● Make security a first-order consideration for all software-intensive systems, recognizing that
security-at-the-perimeter is not enough.

● Shift from a list of requirements for software to a list of desired features and required
interfaces/characteristics to avoid requirements creep or overly ambitious requirements.

● Maintain an active research portfolio into next-generation software methodologies and tools,
including the integration of machine learning and AI into software development, cost
estimation, security vulnerabilities, and related areas.

● Invest in transition of emerging approaches from academia and industry to creating,
analysis, verification, and testing of software into DoD practice (via pilots, field tests, and
other mechanisms).

● Automatically collect all data from DoD weapons systems and make available for machine
learning (via federated, secured enclaves, not a centralized repository).

● Mandate a full program review within the first 6-12 months of development to determine if a
program is on track or requires corrective action or deserves cancellation.

This path has the advantage that the authorities required to undertake it are already in place
and the expertise exists within the Department to begin moving forward. We believe that the
there is strong support for these activities at the top and bottom of the system, and existing

DIB SWAP Study Preliminary Release, 21 Mar 2019 27

groups (e.g., DDS, JIDO, Kessel Run) have demonstrated that the flexibilities exist within the
existing system to develop, procure, deliver, and update software more quickly. The difficulty in
this path is that it requires individuals to figure out how to go beyond the default approaches that
are built into the current acquisition system. Current statutes, regulations, and processes are
very complicated, there is a “culture of no” that must be overcome, and hence using the
authorities that are available requires substantial time, effort, and risk (to one’s career, if not
successful). The risk in pursuing this path is that change occurs too slowly or not at scale, and
we are left with old software that is vulnerable and cannot serve our needs. Our adversaries
have the same opportunities that we do for taking advantage of software and may be able to
move more quickly if the current system is left in place.

4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software

While the first steps to refactoring the defense acquisition system can be taken without
necessarily having to change regulations, the reality of the current situation is that Congress
and DoD have created a massive “spaghetti code” of laws and regulations that are simply
slowing things down. This might be OK for some types of long development, long duration
hardware, but as we have articulated in the previous three chapters it is definitely not for (most
types of) software.

This path takes a more active approach to modifying the acquisition system for software by
identifying those statutes, regulations, and processes that are creating the worst bottlenecks
and modifying them to allow for faster delivery of software to the field. We see this path as one
of removing old pieces of code (statutory, regulatory, or process) that are no longer needed or
that should not be applied to software, as well as increasing the expertise in how modern
software development works so that software programs (and software-centric elements of larger
programs) can be optimized for speed and cycle time.

The following list provides a set of high-level steps that require some additional changes to DoD
culture and process, but also modest changes in current law and existing regulations. These
steps build on the steps listed in path 1 above, although in some cases they can solve the
problems that the previous actions were trying to work around.

● Refactor and simplify Title 10 and the defense acquisition system to remove all statutory,
regulatory, and procedural requirements that generate delays for acquisition, development
and fielding of software while adding requirements for continuous (automated) reporting of
cost, performance (against updated metrics), and schedule.

● Create streamlined authorization and appropriation processes for defense business systems
(DBS) that use commercially-available products with minimal (source code) modification.

● Plan, budget, fund, and manage software development as an enduring capability that
crosses program elements and funding categories, removing cost and schedule triggers that
force categorization into hardware-oriented regulations and processes.

● Replace JCIDS, PPBE, and DFARS with a "PEO Digital" in each Service that uses portfolio
management and direct identification of warfighter needs to decide on allocation priorities.

DIB SWAP Study Preliminary Release, 21 Mar 2019 28

● Create, implement, support, and require a fully automatable approach to T&E, including
security, that allows high-confidence distribution of software to the field on an iterative basis
(with frequency dependent on type of software, but targets cycle times measured in weeks).

● Prioritize secure, iterative, collaborative development for selection and execution of all new
software programs (and software components of hardware programs) (see DIB’s Detecting
Agile BS as an initial view of how to evaluate capability).

● For any software developed for DoD, require that software development be separated from
hardware in a manner that allows non-prime vendors to bid for software elements of the
program on a performance-based basis.

● Shift from certification of executables, to certification of code, to certification of the
development, integration, and deployment toolchain, with the goal of enabling rapid fielding
of mission-critical code at high levels of information assurance.

● Require CIOs, SAEs, PEOs, PMs and any other acquisition roles involving software
development as part of the program to have prior experience in software development.

● Restructure the approach to recruiting software developers to assume that the average
tenure of a talented engineering will be 2-4 years, and make better use of highly qualified
experts (HQEs), intergovernmental personnel act employees (IPAs), reservists, and enlisted
personnel to provide organic software development capability.

● Establish a Combat Digital Service (CDS) unit within each combatant command consisting
of software development talent that can be used to manage command-specific IT assets, at
the discretion of the combatant commander. DDS, operating at the OSD level, is a good
model for what a CDS can do for each COCOM.

Pursuing this path will allow faster updates to software and will improve security and oversight
(via increased insight). In many cases, the Department is already executing some of the actions
required to enable this path. The weakness in this path is that software would generally use the
same basic approach to acquisition as hardware, with various carve-outs and exceptions. This
runs the risk that software programs still move too slowly due to the large number of people who
have to say yes and the need to train a very large acquisition force to understand how software
is different than hardware (and not all software is the same).

4.3 Path 3: A New Acquisition Pathway and Appropriations Category for Software to
Force Change in the Middle

The final path is the most difficult and will require dozens of independent groups to agree on a
common direction, approach, and set of actions. At the end of this path lies a new defense
acquisition system that is optimized for software-centric systems instead of hardware-centric
systems, and that prioritizes security, speed, and cycle time over cost, schedule, and (rigid)
requirements.

To undertake this path, Congress and OSD must write new statutes and regulations for
software, providing increased (and automation-enabled) insight to reduce the risk of slow,
costly, and overgrown programs and enabling rapid deployment and continuous improvement of
software to the field. Laws will have to be changed, and management and oversight will have to
be reinvented, focusing on different measures and a quicker cadence. OSD and the services

https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF

DIB SWAP Study Preliminary Release, 21 Mar 2019 29

will need to create and maintain interoperable (cross-program/cross-service) digital
infrastructure that enables rapid deployment, scaling, testing, and optimization of software as an
enduring capability; manage them using modern development methods; and eliminate the
existing hardware-centric regulations and other barriers. Finally, the Services will need to
establish software development as a high visibility, high-priority career track with specialized
recruiting, education, promotion, organization, incentives, and salary.

The following list of high-level steps required to pursue this path, building on the steps listed in
the previous paths:

● Establish new acquisition pathway(s) for software that prioritizes continuous integration and
delivery of working software in a secure manner, with continuous oversight from automated
analytics.

● Create a new appropriations category that allows (relevant types of) software to be funded
as a single budget item, with no separation between RDT&E, production, and sustainment.

● Establish and maintain digital infrastructure within each Service or Agency that enables
rapid deployment of secure software to the field and incentivize its use by contractors.

● Plan and fund computing hardware (of all types) as consumable resources, with continuous
refresh and upgrades to the most recent, most secure operating system and platform
components.

● Create software development groups in each Service consisting of military and/or civilian
personnel who write code that is used in the field and track individuals who serve in these
groups for future DoD leadership roles.

This path attempts to solve the longstanding issues with software by creating an acquisition
pathway and appropriations category that are fine-tuned for software. It will require a very large
effort to get the regulations, processes, and people in place that are required to execute it
effectively, and there will be missteps along the way that generate controversy and unwanted
publicity. In addition, it will likely be opposed by those currently in control of selling or making
software for the DoD, since it will require that they retool their business to a very new approach
that is not well-defined at the outset. But if successful, this path has the potential to provide
enable DoD to develop, procure, assure, deploy, and continuously improve software at a pace
that is relevant for modern missions and builds on the substantial success of the U.S. private
sector.

DIB SWAP Study Preliminary Release, 21 Mar 2019 30

 Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD

In this final chapter we lay out our recommendations for what Congress and DoD should do to
implement the type of software acquisition and practices reform that we believe is needed for
the future. Our recommendations are organized according to four lines of effort:

A. Congress and OSD should refactor statutes, regulations, and processes for software
B. OSD and the Services should create and maintain cross-program/cross-service digital

infrastructure
C. The Services should create new paths for digital talent (especially internal talent)
D. Acquisition offices and contractors must change the practice of how software is procured

and developed

For each of these lines of effort, we have identified the 2-3 most important recommendations
that we believe Congress and DoD should undertake. These “Top Ten” primary recommend-
ations were chosen not because they solve the entire problem, but because they will make the
biggest difference; without them, substantial change is not likely. In addition, we have identified
16 additional recommendations for consideration once the execution of the first ten
recommendations is successfully underway. For each recommendation, a draft implementation
plan is provided in Appendix A that gives a list of actions required to implement the
recommendation, as well as more detail on the rationale, supporting information, and similar
recommendations from other studies. Potential legislative and regulatory language to implement
selected recommendations is included in Appendix B. While we have tried hard to provide
specific actions, owners and target dates that will drive an implementation plan for each
recommendation, we recognize that in the end, owners will be decided by the Department’s
response to our study and owners will use our actions as a starting point to their own
Implementation Plan.

Figure 5.1 Recommendation struc-
ture. For each line of effort, a set of
primary recommendations (bold) are
provided, along with a set of
additional recommendations for
consideration. Each recommenda-
tion contains a draft implementation
plan that includes background
information on the rationale, vision,
and stakeholders.

DIB SWAP Study Preliminary Release, 21 Mar 2019 31

5.1 The Ten Most Important Things To Do (Starting Now!)

In this section we lay out what we believe are the most important steps for Congress and DoD
to take to fully leverage the opportunities presented by software and the private sector’s
strength in modern development practices. Our commitment to these steps will directly impact
the Department’s ability to achieve the 2018 National Defense Strategy6 goals of increased
lethality, stronger alliance while positioning for new partnerships, and reformed business
practices for better performance and affordability.

Line of effort A. Congress and OSD should refactor statutes, regulations, and processes
for software, providing increased insight to reduce the risk of slow, costly, and overgrown
programs, and enabling rapid deployment and continuous improvement of software to the field.
Reinvent management and oversight, focusing on different measures and a quicker cadence.

Recommendation A1. Establish new acquisition pathway(s) for software that prioritizes
continuous integration and delivery of working software in a secure manner, with continuous
oversight from automated analytics

Current law, regulation, and policy, and internal DoD processes make DevSecOps-based
software development extremely difficult, requiring substantial and consistent senior leadership
involvement. Consequently, DoD is challenged in its ability to scale Agile SW development
practices to meet mission needs. The desired state is that programs have the ability to rapidly
field and iterate new functionality in a secure manner, with continuous oversight based on
automated reporting and analytics, and utilizing IA-accredited commercial development tools.

Implementation of this recommendation could be accomplished by having USD(A&S), in
coordination with USD(C) and CAPE, submit legislative proposal using Sec 805 to propose new
acquisition pathways for two or more classes of software (e.g, application, embedded),
optimized for DevSecOps, for approval by the House and Senate Armed Services Committees.
If approved, USD(A&S) could develop and issue a Directive Type Memorandum (DTM) for the
new software acquisition pathway and the Service Acquisition Executives (SAEs) could issue
Service level guidance for new acquisition pathway. USD(A&S), with SAEs, should select an
initial set of programs that are using DevSecOps to convert to or utilize new SW acquisition
pathway at the same time as developing and implement training at Defense Acquisition
University on new software acquisition pathway for all acquisition communities (FM, Costing,
PM, IT, SE, etc.). As the pathway becomes better understand, the DTM can be converted to a
DoD Instruction (5000.SW?), incorporating lessons learned during initial program
implementation.

This recommendation is supported by the ideas for change listed by the Acquisition subgroup
and is aligned with the recommendations of the 1987 and 2009 Defense Science Board studies.

Recommendation A2. Create a new appropriations category that allows (relevant types of)

6 https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 32

software to be funded as a single budget item, with no separation between RDT&E,
production, and sustainment

Current law, regulation, and policy treat software acquisition as a series of discrete sequential
steps; accounting guidance treats software as a depreciating asset. These processes are at
odds with software being continuously updated to add new functionality and create significant
delays in fielding user-needed capability. The desired state is that programs are better able to
prioritize how effort is spent on new capabilities versus fixing bugs / vulnerabilities, improving
existing capabilities, etc. Such prioritization can be made based on warfighter / user needs,
changing mission profiles, and other external drivers, not constrained by available sources of
funding.

Implementation of this recommendation could be accomplished by having USD(A&S) submit a
legislative proposal to create a new appropriations category for software and software-intensive
programs for approval by the House and Senate Armed Services Committees and funding by
the House and Senate Appropriations Committees. The DoD Comptroller, working with CAPE,
would need to make necessary modifications in supporting PPBE systems to allow use and
tracking of new software appropriation. USD(A&S), in coordination with the Service Acquisition
Executives (SAEs) should select the initial programs that will use the new software
appropriation from those that are currently using DevSecOps. Budget exhibits for the new
software appropriation, replacing the current P-Forms and R-Forms, should be prepared by
USD(A&S) working with USD(C), CAPE, and the Appropriations Committees, and those
programs selected for using the new appropriation category should begin using the exhibits
upon selection into the category (see Appendix C). Finally, FASAB in coordination with
USD(A&S) and USD(C) will need to change the audit treatment of software for this category to
achieve the following: (1) separate category for software instead of being characterized as
property, plant, and equipment; (2) default setting that software is an expense, not an
investment; and (3) there is no “sustainment” phase for software.

This recommendation builds on the recommendations in the Ten Commandments on Software
and our Visit Observations and Recommendations that budgets for software (and software-
intensive) programs should support the full, iterative life-cycle of the software. In addition, the
Acquisition, Appropriations Strategy, Contracting, and Sustainment and Maintenance subgroups
all had recommendations that support this approach. The basic approach advocated here was
also articulated in the 1987 Defense Science Board task for on military software, the GAO
studies in 2015 and 2017, and is consistent with the Portfolio Management Framework
Recommendations 41 and 42 of the Section 809 Panel.

DIB SWAP Study Preliminary Release, 21 Mar 2019 33

Line of Effort B. OSD and the Services should create and maintain cross-program/cross-
service digital infrastructure that enables rapid deployment, scaling, and optimization of
software as an enduring capability, managed using modern development methods in place of
existing (hardware-centric) regulations, and providing more insight (and hence better oversight)
for software-intensive programs.

Recommendation B1. Establish and maintain digital infrastructure within each Service or
Agency that enables rapid deployment of secure software to the field and incentivize its use
by contractors

Currently, DoD programs each develop their own development and test environments, which
requires redundant definition and provisioning, replicated assurance (including cyber), and
extended lead times to deploy capability. Small companies have difficulties providing software
solutions to DoD because those environments are not available outside the incumbent
contractor or they have to build (and certify) unique infrastructure from scratch. The desired
state is that defense programs will have access to, and be stakeholders in, a cross-program,
modern digital infrastructure that can benefit from centralized support and provisioning to lower
overall costs and the burden for each program. Development infrastructure supporting CI/CD
and DevSecOps is available as best of breed and GOTS provided so that contractors want to
use it, though DoD programs or organizations that want or need to go outside of that existing
infrastructure can still do so.

Recommendation B2. Create, implement, support, and use fully automatable approaches to
testing and evaluation (T&E), including security, that allow high confidence distribution of
software to the field on an iterative basis

To deliver SW at speed, rigorous, automated testing processes and workflows are essential.
Current DoD practices and procedures often see OT&E as a tailgate process, sequentially after
development has been completed, slowing down delivery of useful software to the field and
leaving existing (potentially poorly performing and/or vulnerable) software in place. The desired
state is that development systems, infrastructure and practices are focused on continuous,
automated testing by developers (with users). To the maximum extent possible, system
operational testing is integrated (and automated) as part of the development cycle using data,
information and test protocols delivered as part of the development environment. Testing and
evaluation/ certification of COTS components are done once (if justified) and then ATO
reciprocity (Rec B3) is applied to enable use in other programs, as appropriate.

Recommendation B3. Create a mechanism for Authority to Operate (ATO) reciprocity within
and between programs, Services, and other DoD agencies to enable sharing of software
platforms, components and infrastructure and rapid integration of capabilities across
(hardware) platforms, (weapons) systems, and Services

Current software acquisition practice emphasizes the differences among programs: perceptions
around different missions, different threats, and different levels of risk tolerance mean that

DIB SWAP Study Preliminary Release, 21 Mar 2019 34

components, tools, and infrastructure that have been given permission to be used in one
context are rarely accepted for use in another. The lack of ATO reciprocity drives each program
to create their own infrastructure, repeating time- and effort-intensive activities needed to certify
elements as secure for their own specific context. The desired state is that modern software
components, tools, and infrastructure, once accredited as secure within the DoD, can be used
appropriately and cost-effectively by multiple programs. Programs can spend a greater
percentage of their budgets on developing software that adds value to the mission rather than
spending time and effort on basic software infrastructure. Accreditation of COTS components is
done once and then made available for use in other programs, as appropriate.

Line of effort C. The Services should create new paths for digital talent (especially
internal talent) by establishing software development as a high-visibility, high-priority career
track and increasing the level of understanding of modern software within the acquisition
workforce. Increased internal capability is necessary both to allow organic (internal)
development and to enable the Department to best serve as a knowledgeable partner for
software acquired from commercial sources.

Recommendation C1. Create software development units in each Service consisting of
military and civilian personnel who develop and deploy software to the field using DevSecOps
practices.

The DoD’s capacity to apply modern technology and software practices to meet its mission is
required in order to remain relevant in increasingly technical fighting domains, especially against
peer adversaries. While DoD has both military and civilian software engineers (often associated
with maintenance activities), the IT career field suffers from a lack of visibility and support. The
Department has not prioritized a viable recruiting strategy for technical positions, and there is no
comprehensive training or development program that prepares the technical and acquisition
workforce to adequately deploy modern software development tools and methodologies. The
desired state is that DoD recruits, trains, and retains internal capability for software
development, including by service members, and maintains this as a separate career track (like
DoD doctors, lawyers, and musicians). Each Service has organic development units that are
able to create software for specific needs and that serve as an entry point for software
development capability in military and civilian roles (complementing work done by contractors).
The Department’s workforce embraces commercial best practices for the rapid recruitment of
talented professionals, including the ability to onboard quickly and provide modern tools and
training in state-of-the-art training environments. Individuals in software development career
paths are able to maintain their technical skills and take on DoD leadership roles.

Recommendation C2. Expand the use of (specialized) training programs for CIOs, SAEs,
PEOs, and PMs that provide (hands-on) insight into modern software development (e.g.,
agile, DevOps, DevSecOps) and the authorities available to enable rapid acquisition of
software

DIB SWAP Study Preliminary Release, 21 Mar 2019 35

Acquisition professional have been trained and had success in the current model, which has
produced the world’s best military but this model is not serving well for software. New
methodologies and approaches introduce unknown risks, and acquisition professionals are
often not incentivized to make use of the authorities available to implement modern software
methods. At the same time, senior leaders in DoD need to be more knowledgeable about
modern software development practices so they can recognize, encourage, and champion
efforts to implement modern approaches to software program management. The desired state
is that senior leaders, middle management, and organic and contractor-based software
developers are aligned in their view of how modern software is procured and developed.
Acquisition professionals are aware of all of the authorities available for software programs and
use them to provide flexibility and rapid delivery of capability to the field. Program leaders are
able to assess the status of software (and software-intensive) programs and spot problems
early in the development process, as well as provide continuous insight to senior leadership and
Congress. Highly specialized requirements are scrutinized to avoid developing custom software
when commercial offerings are available that are less expensive and more capable.

Line of effort D. Acquisition offices and contractors must change the practice of how
software is procured and developed by adopting modern software development approaches,
prioritizing speed as the critical metric, ensuring cyber protection is an integrated element of the
entire software lifecycle, and purchasing existing commercial software whenever possible.

Recommendation D1. Require access to source code, software frameworks, and
development toolchains, with appropriate IP rights, for all DoD-specific code, enabling full
security testing and rebuilding of binaries from source

For many DoD systems, source code is not available to DoD for inspection and testing, and
DoD relies on suppliers to write code for new compute environments. As code ages, suppliers
are not required to maintain codebases without an active development contract and “legacy”
code is not continuously migrated to the latest hardware and operating systems. The desired
state is that DoD has access to source code for DoD-specific software systems that it operates
and uses to perform detailed (and automated) evaluation of software correctness, security, and
performance, enabling more rapid deployment of both initial software releases and (most
importantly) upgrades (patches and enhancements). DoD is able to rebuild executables from
scratch for all of its systems, and has the rights and ability to modify (DoD-specific) code when
new conditions and features arise. Code is routinely migrated to the latest computing hardware
and operating systems, and routinely scanned against currently-known vulnerabilities. Modern
IP language is used to ensure that the government can use, scan, rebuild, and extend purpose-
built code, but contractors are able to use licensing agreements that protect any IP that they
have developed with their own resources. Industry trusts DoD with its code and has appropriate
IP rights for internally developed code.

Recommendation D2. Make security a first-order consideration for all software-intensive

DIB SWAP Study Preliminary Release, 21 Mar 2019 36

systems, recognizing that security-at-the-perimeter is not enough

Current DoD systems often rely on “security at the perimeter” as a means of protecting code for
unauthorized access. If this perimeter is breached, then a large array of systems can be
compromised. Multiple GAO, DoDIG, and other reports have identified cybersecurity as a major
issue in acquisition programs. The desired future state is that oD systems use a zero-trust
security model in which it is not assumed that anyone who can gain access to a given network
or system should have access to anything within that system. Regular and automated
penetration testing is used to track down vulnerabilities and red teams are engaged to attempt
to breach our systems before our adversaries do.

Recommendation D3. Shift from the use of rigid lists of requirements for software programs
to a list of desired features and required interfaces/characteristics, to avoid requirements
creep, overly ambitious requirements, and program delays

Current DoD requirements processes significantly impede its ability to implement modern SW
development practices by spending years establishing program requirements and insisting on
satisfaction of requirements before a project is considered “done”. This impedes rapid
implementation of features that are of the most use to the user. The desired state is that rather
than a list of requirements for every feature, programs should establish a minimum set of
requirements required for initial operation, security, and interoperability, and place all other
desired features on a list that will be implemented in priority order, with the ability for DoD to
redefine priorities on a regular basis.

5.2 The Next Most Important Things to Tackle

There are a large number of changes that will need to be made to fully realize the vision that 37
years of studies have articulated. This study solicited input from a wide range of stakeholders in
the defense software enterprise, including OSD and Service leaders, industry participants in our
visits and roundtables, and FFRDC personnel who helped put together our report to help
identify the recommendations that we should make. The list of recommendations below are the
next 0x10 (16) recommendations that we believe can be implemented after the ones above are
solidly underway (like software, implementing recommendations is never “done”). We list these
second not because they are dependent on the primary recommendations but simply to
emphasize the urgency of the Top Ten.

ID Recommendation
A3 Require cost assessment and performance estimates for software programs (and software

components of larger programs) be based on metrics that track speed and cycle time, security,
code quality, and functionality

A4 Refactor and simplify Title 10, DFARS, and DoDI 5000.02/5000.75 to remove statutory,
regulatory, and procedural requirements that generate delays for acquisition, development, and
fielding of software while adding requirements for continuous (automated) reporting of cost,
performance (against updated metrics), and schedule

DIB SWAP Study Preliminary Release, 21 Mar 2019 37

A5 Create streamlined authorization and appropriation processes for defense business systems
(DBS) that use commercially-available products with minimal (source code) modification

A6 Plan, budget, fund, and manage software development as an enduring capability that crosses
program elements and funding categories, removing cost and schedule triggers associated with
hardware-focused regulations and processes

A7 Replace JCIDS, PPB&E, and DFARS with a portfolio management approach to software
programs, assigned to "PEO Digital" or equivalent office in each Service that uses and direct
identification of warfighter needs to decide on allocation priorities for software capabilities

B4 Prioritize secure, iterative, collaborative development for selection and execution of new software
development programs (and software components of hardware programs), especially those using
commodity hardware and operating systems

B5 Remove obstacles to DoD usage of cloud computing on commercial platforms, including DISA
CAP limits, lack of ATO reciprocity, and access to modern software development tools

B6 Shift from certification of executables for low and medium risk deployments to certification of
code/architectures and certification of the development, integration, and deployment toolchain

B7 Plan and fund computing hardware (of all appropriate types) as consumable resources, with
continuous refresh and upgrades to current, secure operating systems and platform components

C3 Increase the knowledge, expertise, and flexibility in program offices related to modern software
development practices to improve the ability of program offices to take advantage of software-
centric approaches to acquisition

C4 Restructure the approach to recruiting digital talent to assume that the average tenure of a
talented engineer will be 2-4 years, and make better use of HQEs, IPAs, reservists and enlisted
personnel to provide organic software development capability, while at the same time
incentivizing and rewarding internal talent

D4 Create and use automatically generated, continuously available metrics that emphasize speed,
cycle time, security, and code quality to assess, manage, and terminate software programs (and
software components of hardware programs)

D5 Shift the approach for acquisition and development of software (and software-intensive
components of larger programs) to an iterative approach: start small, be iterative, and build on
success - or be terminated quickly

D6 Maintain an active research portfolio into next-generation software methodologies and tools,
including the integration of machine learning and AI into software development, cost estimation,
security vulnerabilities, and related areas

D7 Invest in transition of emerging tools and methods from academia and industry to creating,
analysis, verification, and testing of software into DoD practice (via pilots, field tests, and other
mechanisms)

D8 Automatically collect all data from DoD weapons systems and make available for machine
learning (via federated, secured enclaves, not a centralized repository)

5.3 Monitoring and Oversight of the Implementation Plan

It would be naive to believe that just listing the recommendations above will somehow make
them quickly and easily implemented after 37 years of previous, largely consistent
recommendations have had relatively minor impact. We believe that DoD should use these
recommendations (and the ones that preceded them) to create an implementation plan for
review by stakeholders (including the DIB, if there is interest). This implementation plan might
use as its starting point the proposed implementation plans that we have articulated in Appendix
R, with agreement by the Secretary of Defense, the Undersecretaries of Defense, the Service

DIB SWAP Study Preliminary Release, 21 Mar 2019 38

Chiefs, CAPE and DOT&E to support the creation and execution of the implementation plan
within 60 days of delivery of this report to Congress.

We propose the following timeline for implementing the recommendations proposed here:

● Within 60 days after delivery of this report to Congress: Define a detailed implementation
plan and assign owners for each of the top recommendations to begin right now.

● FY19 (create): High-level endorsement of the vision of this report, and support for activities
that are consistent with the desired end state (i.e., DevSecOps and enterprise-level
architecture and infrastructure). Identify and launch programs to move out on the priority
recommendations (start small, iterate quickly).

● FY20 (deploy): Initial deployment of authorities, budgets, and processes for software
acquisition and practices reform. Execute representative programs according to the lines of
effort and recommendations in this report. Implement this report in the way we implement
modern software: implement now, measure results, and modify approaches.

● FY21 (scale): Streamlined authorities, budgets, and processes enabling software acquisition
and practices reform at scale. In this time frame, we need a new methodology to estimate as
well as determine the value of software capability delivered (and not based on lines of
code).

● FY22 (optimize): All DoD software development projects transition (by choice) to software-
enabled processes, with talent and ecosystem in place for effective management and
insight.

5.4 Kicking the Can Down The Road: Things That We Could Not Figure Out How to Fix

Despite the fairly comprehensive view that we have attempted to take in this study regarding
how to improve the defense software enterprise, there are a number of challenges remaining
that we were not able to address. We summarize these here for the next study (or perhaps one
37 years from now) to consider as they continue this path forward.

Over-oversight. The Department of Defense’s sprawling software enterprise has many oversight
actors, spanning the Congress, the Office of the Secretary of Defense, Service or Component
leadership, and other executive branch actors like the Government Accountability Office. These
actors each take frequent oversight action in attempts to improve the software in specific
programs and also make well intended efforts to improve the health of the overall system.
However, these oversight actions focus primarily on addressing the behavior of the people
developing and maintaining the software, overlooking the fact that the oversight itself is equally
part of the DoD’s software problem. Ultimately, we can’t fix software without fixing oversight.

There are at least two categories of problems when it comes to software oversight: structural
and substantive.

From a structural perspective, there are too many actors involved in oversight. A program
manager, tasked with leading a software development effort, can have as many as 17 other
actors who can take some form of oversight action on their program. Most of these individuals

DIB SWAP Study Preliminary Release, 21 Mar 2019 39

do not possess the authority to cancel a program unilaterally but all have the ability to delay or
create uncertainty while seeking corrective action for their concerns. These oversight actors
often have overlapping or unclear roles and authorities, as well as competing interests and
incentives. This means that in addition to the necessary checks and balances required between
organizations, there is debate and active competition inside each of the organizations with, for
example, various offices in OSD arguing among themselves in addition to arguing with
Congress and the Services. Further, there is significant personnel turnover within these
positions, meaning that any consensus tends to be short lived.

Substantively, the various oversight actors do not possess a shared understanding of what
constitutes good practice for software or its oversight. Relatedly, these actors do not share a
common vision for what the DoD’s software enterprise should look like today or in the future.
The majority of oversight attention and action is placed on individual programs rather than
considering portfolios in aggregate or the performance of the system as a whole. This program
oversight is highly subjective in nature, relying on reports and PowerPoint slides composed of
narratives and custom created data. Worse, this oversight operates primarily on the
conventional wisdom associated with the oversight of hardware programs, considering cost,
schedule, and performance using decades old heuristics.

Without understanding what good looks like, or the right questions to ask, oversight actors risk
enacting poor fixes. These actions can also be at odds with stated policy. Oversight actions are
always more powerful than written policy, meaning that disparities between the two create the
risk of cognitive dissonance or a shadow policy environment. Disparities also put program
leadership in the unfair position of having to resolve the competing priorities of others, with the
knowledge that failure to do so will lead to more blame and action from above.

Structural and substantive problems lead to oversight that is inconsistent and confusing, making
it essentially impossible to systematically identify symptoms, determine root causes, or
implement scalable fixes. This, in turn, allows everyone involved in DoD software development
and maintenance to feel aggrieved, blame everyone other than themselves for systemic issues,
and continue their behavior without reflection or change, thus perpetuating the cycle.

The approach by oversight organizations both on the Hill and in the DoD should be that policy is
treated as the current hypothesis for how best to ship code that DoD’s users need. Through the
use of data driven governance, each program should then be tested against that policy while
also being a test of the policy. The hypothesis, and policy, must be continually updated based
on standard data that is recognized by, and accessible to, all oversight actors. Implementing
such an approach is within the power of the oversight community but would be challenging and
appears unlikely given current culture and practices. Regardless, those involved in the oversight
of DoD software should not expect meaningfully improved outcomes for that software until the
oversight practices used to improve that software are themselves improved.

Promotion practices. Software is disproportionately talent-driven. Access to strong engineering
talent is one of the most important factors that determine the success or failure of software
projects. All that our rivals have to do to surpass us in national security applications of software
such as AI, autonomy, or data analytics, is to leverage their most talented software engineers

DIB SWAP Study Preliminary Release, 21 Mar 2019 40

work on those applications. And yet in DoD, as much as we struggle to attract those technical
talent, we also struggle to elevate the talent we have.

The companies and institutions who are winning the software game recognize the importance of
identifying and cultivating talented software leaders (whether they are engineers, management,
or strategists working closely with contractors) and actively promote and reward employees
based on merit and demonstrated contribution. In contrast, human capital practices in DoD,
sometimes by design and sometimes by habit and culture, narrowly limit how technical talent
can be evaluated to time in grade. The Department needs to figure out how to recognize when
civilians and service members show an aptitude for software and software management, and be
able to promote, reward, and retain these individuals outside of the current constraints.

Using commercial software whenever possible. DoD should not build something that it can buy.
If there is an 80 percent commercial solution, it is better to buy it and adjust—either the
requirements or the product—rather than build it from scratch. It is generally not a good idea to
over-optimize for what we view as “exceptional performance,”7 because counter-intuitively this
may be the wrong thing to optimize for as the threat environment evolves over time. Similarly,
actions should be taken to ensure that the letter and spirit of commercial preference laws (e.g.,
10 USC 2377, which requires defense agencies to give strong preference to commercial and
non-developmental products) are being followed.

There is a myth that the U.S. private sector—where much of the world’s software talent is
concentrated—is unwilling to work on national security software. The reality is that DoD has
failed to give meaningful government contracts to commercial software companies, which has
generally led to companies making a business decision to avoid it. DoD’s existing efforts to
target the commercial software sector are governed by a “spray and pray” strategy, rather than
by making concentrated investments.8 The DoD seems to love the idea of innovation, but
doesn’t love taking sizeable bets on new entrants or capabilities. It is interesting to note that
Palantir and SpaceX are the only two examples since the end of the Cold War of venture-
backed, DoD-focused businesses reaching multi-billion dollar valuations. By contrast, China
has minted around a dozen new multi-billion dollar defense technologies companies over the
same time period. Some of these problems are purely cultural in nature and require no
statutory/regulatory changes to address. Others likely will require the changes detailed in the
recommendations.].

7 From the 2018 Summary of the National Defense Strategy: Deliver performance at the speed of
relevance. Success no longer goes to the country that develops a new technology first, but rather to the
one that better integrates it and adapts its way of fighting. Current processes are not responsive to need;
the Department is over-optimized for exceptional performance at the expense of providing timely
decisions, policies, and capabilities to the warfighter. Our response will be to prioritize speed of delivery,
continuous adaptation, and frequent modular upgrades. We must not accept cumbersome approval
chains, wasteful applications of resources in uncompetitive space, or overly risk-averse thinking that
impedes change. Delivering performance means we will shed outdated management practices and
structures while integrating insights from business innovation.
8 While the overall funding commitments are large—$2 billion dollars from DARPA for AI, for example—
those commitments have resulted in few, if any, contracts for private companies other than traditional
defense contractors. They have therefore failed to create significant incentives for the commercial tech
sector to invest in government applications of AI.

DIB SWAP Study Preliminary Release, 21 Mar 2019 41

That said, in many cases, there will not be an obvious “buy” option on the table. DoD and the
Services should also work together to prioritize interoperable approaches to software and
systems that enable rapid deployment, scaling, testing, and optimization of software as an
enduring capability; manage them using modern development methods; and eliminate selected
hardware-centric regulations and other particularly problematic barriers. The Services should
find ways to better recognize software as a key area of expertise and provide specialized
education and organizational structures that are better tuned for rapid insertion and continuous
updates of software in the field and in the (back) office.

DIB SWAP Study Preliminary Release, 21 Mar 2019 42

Acknowledgments

The SWAP study members are indebted to a larger number of individuals who helped provide
valuable input, guidance, and support for the study and for the creation of this report.

We would first like to thank the SWAP study team, who coordinated the many activities
associated with the study, including arranging for visits, briefings, and meetings, running the
SWAP working group activities, and assisting in the production of the final report. Our initial
study director, Bess Dopkeen, was detailed to the study from CAPE and provided outstanding
leadership to the overall study. Her vision, energy, and knowledge of the Department were
essential in establishing the interactive nature of this activity and helping us obtain insight into
the many previously unknown aspects of the DoD. She was succeeded by Jeff Boleng, the
USD(A&S) special assistant for software, who initially served as our liaison to A&S and took
over as study directory when Bess departed the Pentagon. Bess and Jeff were assisted by
three outstanding members of the core SWAP team: Courtney Barno, Devon Hardy, and
Sandra O’Dea. The study and the report could not have come together without the tireless (and
patient!) efforts of Courtney, Devon, and Sandy, who participated in every aspect of the report
and helped us shape its content, style, and tone.

The SWAP study was also assisted by individuals from IDA, MITRE, and IDA, who served as
our experts about the acquisition process and were invaluable in working through the main
detailed recommendations. Their knowledge of past studies, the acquisition regulations, the
many novel approaches to acquisition reform, and the language of the acquisition community
helped us better understand the challenges and opportunities for software acquisition and
reform. We would particularly like to thank Kevin Garrison (IDA), Nick Guertin (SEI), Forrest
Shull (SEI), Craig Ulsh (MITRE) for their help, encouragement, and insistent advice.

A major element of the study was the participation of a large “SWAP working group” consisting
of DoD employees who worked with Bess and the SWAP team to provide input to the study and
to articulate pain points, ideas for changes, and proposed updates to legislation and regulations.
A full list of individuals who participated in the working groups is listed in Appendix G, but we
would particularly like to thank John Bergin, Jeff Boleng, Ben FitzGerald, Amy Henninger, Paul
Hullinger, Jane Rathbun, and Philomena Zimmerman.

The Defense Innovation Board (DIB) staff were tightly linked to the SWAP study, which took
place under the auspices of the Science and Technology (S&T) Committee. Josh Marcuse was
instrumental in initiating the study (including identifying and hiring Bess) and providing keen
insights into the report contents and recommendations. Mike Gable, Janet Boehnlein, and
Christopher “Bruno” Brunett served as our designated federal officials (DFOs), accompanying
us on trips, visits, and meetings and helping us uphold the federal advisory committee active
(FACA) guidelines in a manner that enabled us to be transparent and interactive with members
of the public, the Department, and Congress.

Many high ranking officials within the Pentagon took the time to meet with us and provide their
input, views, and encouragement for our efforts. Chief among these was Ellen Lord,
Undersecretary of Defense for Acquisition and Sustainment, who provided input to our study

DIB SWAP Study Preliminary Release, 21 Mar 2019 43

and support for our meetings, while always being careful to help protect the independence of
the committee in support of the charge from Congress. We would also like to thank Bob Daigle
(CAPE), Dana Deasy (CIO), Bob Behler (DOT&E), Hondo Guerts (USN), and Will Roper
(USAF) for their willingness to meet with us on multiple occasions.

Finally, we are indebted to the many individuals working on DoD programs that we met with,
both in industry and in government. On our many visits and in countless briefings, individuals
who were working within the current system, and often pushing the boundaries of what is
possible, gave us their honest insights and feedback. We are particularly grateful for the help
we received from Tory Cuff, Leo Garciga, and Bryon Kroger for their willingness to speak with
us and help us understand what the future could look like.

DIB SWAP Study Preliminary Release, 21 Mar 2019 44

SWAP Vignettes

To help illustrate some of the issues facing the Department in the area of software acquisition
and practices, the SWAP study solicited a set of “vignettes” on different topics of relevance to
the study. These vignettes represent “user stories” contributed by study team members and
collaborators, and the views expressed here do not necessarily reflect the views of the SWAP
committee (though they are consistent with the overall themes contained in the report). The
intent of these vignettes is to provide some additional points of view and insights that are more
specific and, in some cases, more personal.

List of vignettes:
● Implementing Continuous Delivery: The JIDO Approach
● F22: DevOps on a Hardware Platform
● Marking It Hard to Help: A Self-Denial of Service Attack for the SWAP Study
● DDS: Fighting the Hiring Process Instead of Our Adversaries
● Kessel Run: The Future of Defense Acquisitions is #AgileAF
● JMS: Seven Signs Your Software (Program) Is In Trouble

https://docs.google.com/document/d/1WRy5U94UjtIGqLfA81VvHpDwTuxwpuaSPBRnt8n5l5w/edit
https://docs.google.com/document/d/1WRy5U94UjtIGqLfA81VvHpDwTuxwpuaSPBRnt8n5l5w/edit

DIB SWAP Study Preliminary Release, 21 Mar 2019 45

Vignette #1 – Implementing Continuous Delivery: The JIDO Approach
Forrest J. Shull

One theme that emerges from the work in this study is that DoD certainly does have successes
in terms of modern, continuous delivery of software capability; however, in too many cases,
these successes are driven by heroic personalities and not supported by the surrounding
acquisition ecosystem. In fact, in several cases the demands of the rest of the ecosystem cause
friction that, at best, adds unnecessary overhead to the process and slows the delivery of
capability. The Joint Improvised Threat Defeat organization (JIDO), within the Defense Threat
Reduction Agency, is a compelling example.

JIDO describes itself as “the DoD’s agile response mechanism, a Quick Reaction Capability
(QRC) as a Service providing timely near-term solutions to the improvised threats endangering
U.S. military personnel around the world.”9 As such, the speed of delivery is a key success
criteria and JIDO has had important improvements in this domain. Central to accomplishing
these successes has been the adoption of a DevSecOps solution along with a continuous ATO
process, which exploits the automation provided by DevSecOps to quickly assess security
issues.

At least as important as the tooling are the tight connections that JIDO has enabled among the
stakeholder groups who have to work together with speed to deliver capability. JIDO has
personnel embedded in the user communities associated with different COCOMs, referred to as
Capability Data Integrators (CDIs). These personnel are required to be familiar with the domain,
familiar with the technology, and forward-leaning in terms of envisioning technical solutions to
help warfighter operations. Almost all CDIs have prior military experience and are deployed in
the field, moving from one group of users to another, helping to train them on the tools that are
available, and understanding at the same time what they still need. CDIs have tight reachback
to JIDO, and are able to identify important available data that can be leveraged by software
functionality and can be developed with speed through the DevSecOps pipeline.

JIDO has also focused on knocking down barriers among contractors and government
personnel. JIDO finds value in relying on contractor labor that can flex and adapt as needed to
the technical work, with effort spent on making sure that the mix of government personnel and
multiple contractor organizations can work together as a truly integrated team. To accomplish
this, JIDO has created an environment with a great deal of trust between government and
contractors. There are responsibilities that are inherently governmental, and tasks that can be
delegated to the contractor. Finding the right mix requires experimentation, especially since
finding the personnel with the right skillset on the government side is difficult.

Despite these successes at bringing together stakeholders within the JIDO team, stakeholders
in the program management office (PMO) sometimes describe substantial difficulties in working
with the rest of the acquisition ecosystem, since on many dimensions the agile/DevSecOps
approach does not work well with business as usual. For example, they describe instances
where the Services or the Joint Chiefs push back on solutions that were created to address

9 JIDO SecDevOps Concept of Operations, v1

DIB SWAP Study Preliminary Release, 21 Mar 2019 46

requirements from the field. Thanks to the CDIs, JIDO can create a technical solution that
answers identified requirements from warfighters in the field, but that doesn’t mean it will get
approval for deployment. There is a mismatch and potential for miscommunication when the
organizations that control deployment don’t own the requirements themselves.

Also, because JIDO operates in an agile paradigm in which requirements can emerge and get
re-prioritized, it is difficult for them to justify budget requests upfront in the way that their
command chain requires. JIDO addresses this today by creating notional, detailed mappings of
functionality to release milestones. Since a basic principle of the approach is that capabilities
being developed can be modified or re-prioritized with input from the warfighter, this predictive
approach provides little or no value to the JIDO teams themselves. Even though JIDO refuses
to map functionality in this way more than 2 years out, given that user needs can change
significantly in that time, the program has had to add headcount just to pull these reports
together.

JIDO has no problem showing value for the money spent. They are able to show numbers of
users and, because they have personnel embedded with user communities, can discuss
operational impact. As mentioned above, their primary performance metric is “response from the
theater.” Currently, JIDO faces a backlog of tasks representing additional demand for more of
their services, as well as a demand for more CDIs. Despite these impactful successes, the
surrounding ecosystem unfortunately provides little in the way of support and much that hinders
the core mission. It is difficult to see how these practices can be replicated in other
environments where they can provide positive impact, until these organizational mismatches
can be resolved.

DIB SWAP Study Preliminary Release, 21 Mar 2019 47

Vignette #2 – F22: DevOps on a Hardware Platform
Craig Ulsh

The F-22A Raptor program recognized a need for greater speed and agility and took action. In
mid-2017, the Vice Chief of Staff of the Air Force and Air Force Acquisitions leadership realized
the F-22A Raptor modernization efforts where not delivering at a speed that would keep pace
with emerging threats. Air Force leadership secured the expertise of the Air Force Digital
Service (AFDS). A joint team assessed the program and captured a series of observations and
recommendation. The overarching assessment was:

“The Air Force must move faster, accept a greater amount of risk, and commit to
radical change with how the F-22A modernization effort is managed and
technology is implemented. Competitors are moving faster, and blaming poor
vendor performance will not help the F-22A Raptor remain the dominant air
superiority platform.”

The F-22A program office came to the realizations that change was needed. The traditional F-
22 acquisition process was slow and cumbersome, with initial retrofits taking six years to deliver.
The program recognized the following symptoms:

● Requirements were static and rigidly defined
● Capability was delivered in large, monolithic releases
● Change was avoided and treated as a deviation from well-guarded baselines
● Too much focus on intensive documentation
● Marathon test events

More specifically, a number of issues were identified that are common among weapons
systems:

Development practices. Development process were matched to the traditional acquisition
process. Large feature sets, multiple baselines, highly manual developer testing tools, and
limited focus on continuous software infrastructure upgrades contributed to the slow capability
delivery cycle. Several specific recommendations were made under the overarching
recommendation for the software development teams to adopt modern software practices.

Planning. Several inefficiencies were identified in the planning process including lack of metrics
for estimation of effort, inability to prioritize and inefficient use of developer time. Again,
recommendations to adopt modern agile software processes were proposed.

Organization. Organizational gaps included poor collaboration across teams, lack of incentives
for engineering talent and competing priorities across multiple vendors.

Contracts. The single most significant observation is the failure to prioritize.

DIB SWAP Study Preliminary Release, 21 Mar 2019 48

In November 2017, the F-22 program office took several steps to accelerate the F-22A
modernization efforts. In response to outdated development practices, the program office
restructured TACLink 16 and TACMAN programs into a single agile development stream. To
properly match the contractor effort with a new development approach, a “level of effort” for
prime development labor was adopted. To address some of the planning concerns, steps were
taken to adjust program alignments and authorities.

The F-22A Raptor program has made positive steps in adopting a more modern software
approach, but the results are yet to be seen. The program office has learned lessons during the
transition, including:

● Culture change has been the biggest hurdle
● Recognizing and accepting that things will go wrong
● Security controls limit flexibility and communication

The program is on the right track with a sound plan to accelerate delivery. But the program
office also noted in the immortal words of Mike Tyson, “Everyone has a plan until they get
punched in the face.”

DIB SWAP Study Preliminary Release, 21 Mar 2019 49

Vignette #3 – Marking It Hard to Help:

A Self-Denial of Service Attack for the SWAP Study
Richard Murray

The Department makes use of advisory committees consisting of a mixture of government,
industry and academic experts, all trying to help. However, the department can make it
extremely difficult for these groups to function, an example of what we refer to on the Defense
Innovation Board (DIB) as a “self-denial of service attack.”10 The DIB SWAP study is itself a
case in point.

<rant>

The DIB Software Acquisition and Practices (SWAP) study clock started ticking when the 2018
NDAA was signed on 12 December 2018. We had our first SWAP discussion at the Pentagon
on 16 January, before we had officially been requested by the Under Secretary for Defense
(Acquisition and Sustainment) to start, but knowing this was coming (and using the DIB Science
& Technology [S&T] committee to ramp up quickly). We identified potential subcommittee
members by 12 February and we were officially charged to carry out the study on 5 April 2018.
The one-year Congressionally-mandated end date was thus set as 5 April 2019. The DIB S&T
subcommittee sent in the list of suggested subcommittee members. Then we started waiting…

On 24 May, after a DIB meeting, one of the SWAP co-chairs found out that there had been no
movement on these positions. He sent a note to the DIB’s Executive Director, expressing
disappointment and re-iterating the importance of getting these people on board early in the
study. The Executive Director tried to use this note to push things along. More waiting…

The first activity in which any new member of the SWAP subgroup participated was on 1
November 2018, a full 30 weeks after our 52 week countdown started and 9 months after we
had identified the people we wanted to help. Even this took repeated “interventions” by the DIB
staff and, in the end, only two of the four people that we hoped could help were able to
participate in the study. The timing was such that we had already visited 5 of the 6 programs
with which we met, written 7 of the 8 concept papers that we generated, and held 3 of the 4
public meetings that provided input for our report.

Why did things take so long? These people were ready to help, had served in government
advisory roles in the past, and provided incredibly valuable input in the end (but only in the end).
Maybe we need some sort of “FACA Pre ✓” that allows the DoD to make use of people who are
willing to help and all we need to do is ask...

Another example: the SWAP study decided to use Google’s G-Suite as our means for writing
our report. It had some nice features for collaboration and several of us were familiar with using
it. Setting up a G-Suite site is fast and easy, and a member of the study had previously created

10 The DIB first heard this term from one of the military instructors at the Air Force Academy and we now
use it all time time.

DIB SWAP Study Preliminary Release, 21 Mar 2019 50

a site in a matter of minutes and had a fully operational, two-factor authenticated set of accounts
up and running in less than a week. It turns out that the Department has the authority to create
official G-Suite sites and so we just needed to get permission to use it.

Our request went in ~10 April 2019. The site was created on 8 August 2019, 17 weeks after our
request. As near as we can tell, the only thing that happened during the 4 months that it took to
get the site working was that people said “no” and then other people had to spend time figuring
out why they said no and either convincing them that this really was useful and a good solution
for the study’s needs, and/or going above their heads.

A major theme from the beginning of the SWAP study, and more generally the DIB’s overall
work, has been that DoD technology needs to move at the speed of (mission) need, faster than
our adversaries and, certainly, not that much slower than what has proven possible and
effective in the private sector. If the Department wants to take advantage of people who can
help it be more effective in development and delivery of technology for improving national
security, it should figure out how to quickly put together groups of people from inside and
outside government, provide them with modern collaboration environments, and let them spend
their time providing service to the Department instead of struggling with the bureaucracy.

</rant>

DIB SWAP Study Preliminary Release, 21 Mar 2019 51

Vignette #4 – DDS: Fighting the Hiring Process Instead of Our Adversaries
Sean Brady, Kevin Carter, Justin Ellsworth

In novelist James Patterson and former President Bill Clinton’s political thriller, The President is
Missing, a terrorist group threatens to unleash cyber-warfare on the Western World bringing
about the “Dark Ages”. The President (in the story) must sneak away from the White House
incognito, engage in shootouts, survive an ambush on Memorial Bridge, and assemble the best
computer scientists from our government and military to take out the impending computer virus
before it strikes.

At this point, the novel introduces a top “white hat hacker” who joins the President’s team. She
impresses the FBI with her hacking abilities and they hire her on the spot. In a sensational
thriller, full of suspended disbelief, this was by far the most unbelievable.

There’s no way government hiring works that effectively or efficiently.

We know because we tried.

The Defense Digital Service (DDS) is an organization within the Pentagon tasked with driving a
giant leap forward in the way the Department builds and deploys technology and digital
services. One of DDS’s most visible programs is Hack the Pentagon, the first bug bounty
program in the history of the Federal government. Bug bounties (also known as crowd-sourced
hacking challenges) allow private citizens to harness their diverse range of talent to contribute
and strengthen our nation’s security posture in exchange for a monetary reward for finding
security issues. Bug bounties are an integral part of private sector security strategies at
companies including Microsoft, Google, Twitter, and Facebook.

The winner of one of these Hack the Pentagon challenges was a 17-year-old high school
student, who beat out 600 other invited hackers by reporting 30 unique vulnerabilities to the
Department. After the challenge, he expressed interest in interning so he could help contribute
to our nation’s security outside of the challenges.

DDS staff spent the next eight months and approximately 200 man hours trying to navigate the
hiring process to bring the hacker onboard. DDS engaged with the Washington Headquarters
Service, the Air Force internship program, and U.S. Army Cyber HR organizations to identify
applicable hiring authorities and more importantly, the HR specialists who could help drive the
hiring actions for a non-traditional, but obviously qualified, candidate.

Unfortunately, what we found was a system ill-equipped to evaluate technical expertise
(especially when demonstrated through experience or skill rather than certifications or
education) and resistant to leveraging the full flexibilities and authorities provided.

Twice the hacker’s resume was rejected as insufficient to qualify him at the necessary grade
level for using direct hire authority. Ultimately, the candidate lengthened his resume to a total of
five pages which a classifier reviewed and determined would qualify him for the GS-4 level,
which equates to less than $16 per hour. (For what it’s worth, the GS-5 only requires
“experience that provided a knowledge of data processing... gained in work such as a computer

DIB SWAP Study Preliminary Release, 21 Mar 2019 52

operator or assistant, [or] computer sales representative…” according to the OPM GS-2210:
Information Technology Management Series General Schedule Qualification Standards.) We
like to point out that he would’ve qualified if he had worked a year at Best Buy.

Oh, and did we mention he landed on TIME’s List of the 25 Most Influential Teenagers of 2018.
He is currently studying computer science at Stanford University.

We recognize that it is unreasonable to expect a classification specialist to understand and
translate the experience listed in a resume to the education, demonstrated knowledge, and
specialized experience requirements that must be met for each grade level in each job series.

The classification specialist may not have known how this particular candidate’s listed
experience developing “mobile applications in IonicJS, mobile applications using Angular, and
APIs using Node.js, MongoDB, npm, Express gulp, and Babel,” met or did not meet the
classification requirements of “experience that demonstrated accomplishment of computer-
project assignments that required a wide range of knowledge of computer requirements and
techniques pertinent to the position to be filled.”

Which is why DDS provided a supporting memo to the classifier that identified where the
candidate's resume and classification guide matched. However, the HR office refused to accept
the supporting document despite OPM guidance that “It is entirely appropriate (and
encouraged!) to use Subject Matter Experts (SMEs) outside of HR to rate and rank applicants
and determine the most highly qualified candidates for a position.”

Thankfully, our story, like The President is Missing has a happy ending. When it became clear
that we would lose the hacker to a competing offer from the private sector, leadership at some
of the highest levels of the Pentagon intervened and ordered their HR office to make the hire.
With sufficient visibility and the right people assigned, the hacker’s original (one page) resume
was reviewed and used to hire him at a reasonable, but still below market, rate. We were
ultimately able to hire him, but the process required escalation and is not scalable for more than
a small number of hires.

The hacker, now 18, joined DDS as an employee during the summer of 2018 and during that
time identified numerous vulnerabilities that threatened the security of information and
potentially the safety of our nation.

His story was not isolated to one HR specialist or one service. As a Department, we made it as
hard as possible for him to join (all while the private sector offered higher salaries and housing
stipends). Hiring him did not require a new law or regulation; it required an understanding of his
technical abilities, trust in those who evaluated him, and leadership that prioritizes people over
process.

DIB SWAP Study Preliminary Release, 21 Mar 2019 53

Vignette #5 – Kessel Run: The Future of Defense Acquisitions Is #AgileAF
Dan Ward

I’ve seen the future, and it’s #agileAF.

That’s the hashtag used by an Air Force software company known as Kessel Run – the “AF”
stands for Air Force, by the way. And I did say “software company,” which is how members of
this military unit describe their organization. Kessel Run does not look like any other program
office the Air Force has ever seen. That is its great strength. That is its great peril. And that is
why it is the future.

What’s so great about Kessel Run? For starters, they deliver. As one example from many, in
less than 130 days they fielded an accredited Secret Internet Protocol Router (SIPR) cloud-
native DevOps platform at Al Udeid Air Base, then replicated the instance at Shaw Air Force
Base and fielded another DevOps platform at Osan Air Base in Japan. Don’t worry if that last
sentence sounded like technobabble – the point is they put stuff into the field quickly. In
contrast, the previous program charged with addressing this need (which went by the catchy
name “AOC 10.2”) spent $430M over ten years before being terminated “without delivering any
meaningful capability,” to quote Senator John McCain. But while Kessel Run’s ability to field
operational software is noteworthy, their organizational achievement and the culture they built
just might be the real breakthrough.

It turns out disruptive new technologies do not merely require cutting edge tech. They also
require new organizational architectures, to use Professor Rebecca Henderson’s term, and very
specific cultural features.

Easier said than done, of course. Building and sustaining these innovative structures inside a
large legacy organization like the US military requires replacing existing standards and norms.
That’s even harder than it sounds and is why so many large companies fail to make the switch.

Despite the difficulty, the Kessel Run team seems to have cracked the code and built a unique
organization that operates at warp speed. The most visible difference between KR and
business-as-usual military program offices is their location. Rather than spending all their time
on the military base they are technically assigned to, Kessel Run personnel operate from a
brightly lit We Work office in downtown Cambridge, MA. The conference rooms have Star Wars
themed names, instead of mil-standard room numbers. The walls are covered in multi-colored
sticky notes. The view of Boston is spectacular. You get the picture.

Only slightly less visible is their approach to contracting. Instead of handing the work over to a
major defense contractor, they built a collaborative partnership with a small-ish software
company named Pivotal. Together they use DevOps methods like pair programming where Air
Force coders work side-by-side with Pivotal coders to produce software that runs on classified
military systems and supports real-world military operations.

https://www.defensenews.com/air/2017/07/13/air-force-cancels-air-operations-center-10-2-contract-starts-new-pathfinder-effort/
https://www.defensenews.com/air/2017/07/13/air-force-cancels-air-operations-center-10-2-contract-starts-new-pathfinder-effort/
http://dimetic.dime-eu.org/dimetic_files/HendersonClarkASQ1990.pdf

DIB SWAP Study Preliminary Release, 21 Mar 2019 54

Where people sit and how they collaborate are just the tip of the iceberg. The Kessel Run
culture is the product of hundreds of thoughtful design decisions that continually reinforce
principles of learning, collaboration, critical thinking, and agility. The details of these decisions
are beyond the scope of this short vignette, but the fact that Kessel Run continues to do the
hard work of deliberately crafting and maintaining its culture is absolutely foundational to their
story.

Their story is happening right now, so saying “the future is #agileAF” is actually an observation
about the present. Kessel Run’s approach is what right looks like today. They are the new
standard of military acquisition excellence, and already the other services are starting to follow
suit. Just last month the US Naval Institute’s blog had a post titled The Navy’s Kessel Run.
When your program office’s name gets used in a headline like that, it’s a sure sign you’re doing
something right.

Some skeptical commentators have expressed concern about the risks inherent in a high-speed
operation like Kessel Run. In response, let’s hear from the 4-star commander of US Strategic
Command, General John Hyten. He’s responsible for the nation’s nuclear arsenal, and is
precisely the type of serious, thoughtful, risk-averse leader we want in charge of nuclear
weapons. If anyone has a definitive professional opinion on KR’s risk profile, it’s General Hyten.

On several occasions Gen Hyten has stated that what keeps him up at night is the thought that
the US military’s technology community has “lost the ability to go fast.” This inability to move
quickly increases the likelihood of operational shortfalls and degrades our nation’s overall
defense posture. In General Hyten’s assessment, going too slow is far riskier than going too
fast. He sounds quite comfortable with Kessel Run’s pace.

In a similar vein, Secretary of the Air Force Heather Wilson, submitted a report to Congress in
October 2018 that described Kessel Run’s achievements to date. She wrote “The use of Agile
DevOps methodologies… is proving successful and we are able to rapidly deliver cloud native
applications that increase operational utility… We believe we have demonstrated the ability to
continuously deliver software that adds value to the warfighter.” (emphasis added)

So the question is not whether the Kessel Run team delivers good results or addresses the
needs of the operational community. They clearly do. Instead, the question is how long it will
take the Department of Defense to adopt this organizational innovation on a larger scale. How
long will the DoD wait before making Kessel Run-style organizations and culture the default
rather than the exception?

Replicating the Kessel Run culture requires more than giving all your conference rooms Star
Wars themed names and putting military personnel into civilian clothes. In fact, the best way to
replicate the Kessel Run culture is to not replicate it exactly. The wisest imitators will use Kessel
Run’s example for illumination, not imitation. They will learn from Kessel Run’s practices, not
simply cut and paste them onto existing organizational structures. The wisest imitators will
commit to having the difficult, ongoing conversations about values, attitudes, and beliefs that

https://blog.usni.org/posts/2019/01/03/the-navys-kessel-run
https://dod.defense.gov/News/Article/Article/1386361/us-must-move-faster-or-risk-losing-lead-in-space/

DIB SWAP Study Preliminary Release, 21 Mar 2019 55

lead to genuine culture shifts. They will do the hard work of establishing and maintaining a
healthy culture that unleashes people’s talent and enables them to do their best work.

Kessel Run is not perfect, of course. They have collected a number of critics and skeptics
alongside their fans and supporters. Interestingly, no critics see the project’s shortcomings more
clearly and pointedly than the Kessel Run members themselves. The team is very aware they
are still learning, still experimenting, still making mistakes and identifying opportunities for
improvement. They are the first to tell you that Kessel Run has problems and struggles. They
are quick to agree with some of their critics about ways the program can and should improve.
That is the thing I admire most about this team. That just might be the most important practice
for the rest of us to follow. And that is precisely why the future is #agileAF.

DIB SWAP Study Preliminary Release, 21 Mar 2019 56

Vignette #6 – JMS: Seven Signs That Your Software (Program) Is In Trouble
Richard M. Murray

The DIB SWAP study visited the JMS (JSpOC [Joint Space Operations Center] Mission
System) program in August 2018. The team was open and cooperative, and the people working
on the project were highly capable and well-intentioned. At the same time, our assessment of
the program was that it was doomed to failure. Because the JMS program was restructured
after our visit, we felt it was OK to spell out the problems as examples of what can go wrong.

While there were many issues that led to the failure of the JMS program, the following seven are
ones that are not a function of the program per se, but rather the process that created it. We
thus call these out as general things to look for as indications that your software (program) may
be in trouble.

1. The problem is being made harder than it needs to be. JMS increment 2 has a budget of
just under $1B. The basic function of the JMS system is to track objects in space. While there
are engineering challenges to doing this with the proper precision, the basic problem is not that
hard. Our sense was that the project could be converted to an “app” within AOC Pathfinder, or
something equivalent. Assign 20-30 [50? 100?] programmers (+ 20% program management,
administration) to work on it for 3 years at $10-20M/year, with first capability due in 6 months,
increments every 2 weeks (based on user feedback). Interface to existing data sources (via SW
interfaces), run in the cloud, use a scalable architecture that can get to 1M objects in the next
year or two. Make sure that the “app” architecture can accept a commercial product if one is
available that meets the needs of the user (there were some indications this might have already
be happening). Target budget: $10-20M/year for first 5 years, $5-15M/year in perpetuity after
that.

2. The requirements are outdated. Many of the requirements for JMS increment 2 appear to
trace back to its original inception circa 2000 and/or its restart in 2010. Any software program in
which a set of SW requirements were established more than 5 years ago should be shut down
and restarted with a description of the desired end date (list of features with specifications) and
a prioritization of features that should be targeted for simplest usable functionality.

3. The program organizational structure is designed to slow things down.

[Add org chart picture from briefings]

Any software program with more than 1 layer of “indirection” between the prime
contractor/integrator and the companies doing the engineering work should be shut down and
restarted with a set of level-of-effort style contracts that go directly from the system integrator to
the companies delivering code. The system integrator should own the architecture, including the
design specifications for the components that plug into that architecture.

4. The program contract structure is designed to slow things down even more. The
program had at least a dozen contracts with all sorts of small companies and national labs. It
was apparently treated as a “COTS” integration problem with lots of pieces, but it was
implemented in a way that seemed designed to insure that nobody could make any progress.

DIB SWAP Study Preliminary Release, 21 Mar 2019 57

5. The program is implementing “waterfall with sprints” (otherwise known as agile BS).
The program was implementing “sprints” of ~6-9 months (agile BS detector alert!). Sprints have
100s of tasks spread across 6 development teams. Just coordinating was taking weeks. For a
while the program had used 4 week sprints, but infrastructure was not available to support that
cadence. Test happens after delivery of software, with very little automation.

6. The program management office is too big and doesn’t know enough about software.
We were told there were 200-260 FTEs in the program office. The overall program management
should be limited 10-20% of the size of the program, so that resources are focused on the
development team (including system architects, user interface designers, programmers, etc),
where the main work gets done. The program office must have expertise in software programs
so that they are able to utilize contract and oversight structures that are designed for software
(not hardware).

7. OT&E is done as a tailgate process. As an ACAT1 program, JMS was mandated to have
the Air Force Operational Test and Evaluation Center (AFOTEC) as the test organization. This
required the program to freeze its baseline, do the tests, and then wait 120 days for report. The
consequence of this approach was to slow down the program even more.

The JMS program has undergone major changes to address the issues above, and so the
criticisms here should be taken as an example of some of the signs that a program is in trouble.

	Main Report
	Contents:

	Chapter 1. Who Cares: Why Does Software Matter for the DoD?
	1.1 Where Are We Coming from, Where Are We Going?
	1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD
	1.3 What Kind of Software Will We Have To Build?
	1.4 What Are the Challenges That We Face (and Consequences of Inaction)?

	Chapter 2. What Does It Look Like to Do Software Right?
	2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps
	2.2 Empowering the Workforce: Building Talent Inside and Out
	2.3 Getting It Right: Better Oversight AND Superior National Security
	GAO-19-128: Published: Oct 9, 2018. Publicly Released: Oct 9, 2018

	2.4 What’s the R&D Strategy for Our Investment?

	Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?
	3.1 37 Years of Prior Reports on DoD Software
	3.2 Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be Different
	3.3 Consequences of Inaction: Increasing Our Attack Surface and Shifting Risk to the Warfighter

	Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward
	4.1 Path 1: Make the Best Out of What We’ve Got
	4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software
	4.3 Path 3: A New Acquisition Pathway and Appropriations Category for Software to Force Change in the Middle

	Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD
	5.1 The Ten Most Important Things To Do (Starting Now!)
	Line of effort A. Congress and OSD should refactor statutes, regulations, and processes for software, providing increased insight to reduce the risk of slow, costly, and overgrown programs, and enabling rapid deployment and continuous improvement of s...
	Line of Effort B. OSD and the Services should create and maintain cross-program/cross- service digital infrastructure that enables rapid deployment, scaling, and optimization of software as an enduring capability, managed using modern development meth...
	Line of effort C. The Services should create new paths for digital talent (especially internal talent) by establishing software development as a high-visibility, high-priority career track and increasing the level of understanding of modern software w...
	Line of effort D. Acquisition offices and contractors must change the practice of how software is procured and developed by adopting modern software development approaches, prioritizing speed as the critical metric, ensuring cyber protection is an int...

	5.2 The Next Most Important Things to Tackle
	5.3 Monitoring and Oversight of the Implementation Plan
	5.4 Kicking the Can Down The Road: Things That We Could Not Figure Out How to Fix

	Acknowledgments
	SWAP Vignettes

